Refine Your Search

Topic

Author

Search Results

Journal Article

Virtual Assessment of Occupied Seat Vibration Transmissibility

2008-06-17
2008-01-1861
This paper presents an integrated simulation process which has been performed in order to assess the riding comfort performance of a vehicle seat system virtually. Present methods of seat comfort design rely on the extensive testing of numerous hardware prototypes. In order to overcome the limitations of this expensive and time-consuming process, and to fasten innovation, simulation-based design has to be used to predict the seat comfort performance very early in the seat design process, leading to a drastic reduction in the number of physical prototypes. The accurate prediction of the seat transfer function by numerical simulation requires a complete simulation chain, which takes into account the successive stages determining the final seat behaviour when submitted to vibrations. First the manufacturing stresses inside the cushion, resulting from the trimming process, are computed.
Technical Paper

Test Center for Aging Analysis and Characterization of Lithium-Ion Batteries for Automotive Applications

2011-04-12
2011-01-1374
A test center for aging analysis and characterization of Lithium-Ion batteries for automotive applications is optimized by means of a dedicated cell tester. The new power tester offers high current magnitude with fast rise time in order to generate arbitrary charge and discharge waveforms, which are identical to real power net signals in vehicles. Upcoming hybrid and electrical cars show fast current transients due to the implemented power electronics like inverter or DC/DC converter. The various test procedures consider single and coupled effects from current profile, state of charge and temperature. They are simultaneously applied on several cells in order to derive statistical significance. Comprehensive safely functions on both the hardware and the software level ensure proper operation of the complex system.
Technical Paper

System Level Design Simulation to Predict Passive Safety Performance for CFRP Automotive Structures

2013-04-08
2013-01-0663
Despite increasingly stringent crash requirements, the body structures of future mainstream production cars need to get lighter. Carbon fiber reinforced polymer (CFRP) composites with a density 1/5th of steel and very high specific energy absorption represent a material technology where substantial mass can be saved when compared to traditional steel applications. BMW have addressed the demanding challenges of producing several hundred composite Body-in-White (BIW) assemblies a day and are committed to significant adoption of composites in future vehicle platforms, as demonstrated in the upcoming i3 and i8 models. A next step to further integrate composites into passenger cars is for primary structural members, which also perform critical roles in passive safety by absorbing large amounts of energy during a crash event.
Journal Article

Simulation of Underbody Contribution of Wind Noise in a Passenger Automobile

2013-05-13
2013-01-1932
Wind noise is a significant source of interior noise in automobiles at cruising conditions, potentially creating dissatisfaction with vehicle quality. While wind noise contributions at higher frequencies usually originate with transmission through greenhouse panels and sealing, the contribution coming from the underbody area often dominates the interior noise spectrum at lower frequencies. Continued pressure to reduce fuel consumption in new designs is causing more emphasis on aerodynamic performance, to reduce drag by careful management of underbody airflow at cruise. Simulation of this airflow by Computational Fluid Dynamics (CFD) tools allows early optimization of underbody shapes before expensive hardware prototypes are feasible. By combining unsteady CFD-predicted loads on the underbody panels with a structural acoustic model of the vehicle, underbody wind noise transmission could be considered in the early design phases.
Journal Article

Sensitivity Analysis of NVH Simulations with Stochastic Input Parameters for a Car Body

2022-06-15
2022-01-0951
Uncertainties play a major role in vibroacoustics - especially in car body design in the preliminary development because of the overall spread in the production that should be covered with one simulation model. Therefore, we use uncertain input parameters to determine the stochastically distributed admittance of the car body before each part of the car is fully designed. To gain a stochastic result - the stochastically distributed admittance curve - we calculate a deterministic finite element simulation several times with sets of stochastically distributed input parameter values. To reduce simulation time and cost of the car model with many million degrees of freedom we focus on the uncertain parameters that show a significant influence on the admittance curve. It is therefore necessary to be able to accurately estimate for each parameter if its influence on the admittance of the car body plays a major role for the noise vibration harshness simulation.
Technical Paper

Research Results and Progress in LeaNOx II -A Co-operation for Lean NOx Abatement

2000-10-16
2000-01-2909
In a consortium of European industrial partners and research institutes, a combination of industrial development and scientific research was organised. The objective was to improve the catalytic NOx conversion for lean burn cars and heavy-duty trucks, taking into account boundary conditions for the fuel consumption. The project lasted for three years. During this period parallel research was conducted in research areas ranging from basic research based on a theoretical approach to full scale emission system development. NOx storage catalysts became a central part of the project. Catalysts were evaluated with respect to resistance towards sulphur poisoning. It was concluded that very low sulphur fuel is a necessity for efficient use of NOx trap technology. Additionally, attempts were made to develop methods for reactivating poisoned catalysts. Methods for short distance mixing were developed for the addition of reducing agent.
Technical Paper

Real-Time Engine Models

2003-03-03
2003-01-1050
Engine management systems in modern motor vehicles are becoming increasingly extensive and complex. The functionality of the control units which are the central components of such systems is determined by the hardware and software. They are the result of a lengthy development and production process. Road testing of control units, together with testing them on the engine test bench, is very time consuming and costly. An alternative is to test control units away from their actual environment, in a virtual context. This involves operating the control unit on a Hardware-in-the-Loop test bench. The control unit's large number of individual and interlinked functions necessitates a structured, reproducible test procedure. These tests can, however, only be conducted once an engine prototype has been completed, as the parameters for the existing conventional models are determined from the data measured on the test bench.
Journal Article

Psychoacoustic Requirements for Warning Sounds of Quiet Cars

2012-06-13
2012-01-1522
According to upcoming legislative regulations in certain countries, electric and hybrid-electric vehicles (EVs and HEVs) will have to be equipped with devices to compensate for the lack of engine noise needed to warn pedestrians against the vehicles. This leads to the question of appropriate sound design which has to meet specific psychoacoustic requirements. The present paper focuses on auditory features of warning sounds to enhance pedestrians' safety with a major focus on the detectability of the exterior noise of the vehicle in an ambient noise. For the evaluation of detectability, the psychoacoustic model developed by Kerber and Fastl will be introduced allowing for the prediction of masked thresholds of the approaching vehicle. The instrumental assessment yields estimates of the distance of an approaching vehicle at the point it becomes audible to the pedestrians.
Technical Paper

Psychoacoustic Modelling of Sound Attributes

2006-04-03
2006-01-0098
This study inquired into perceived attributes of car interior noise and correlating psychoacoustic parameters. Auditory assessments of a total of 29 vehicles were performed during cruise and acceleration in two independent road tests. Four perceptual dimensions were found to determine the sound evaluations: comfort/loudness, sportiness, harshness, and timbre. A regression model was used to predict comfort/loudness from sound level, roughness, sharpness and speech intelligibility (SVI). Instrumental assessments of engine roughness demonstrated to predict harshness to a large extent. Sportiness was substantially correlated with the increase of engine sound level due to load change. The latter finding was further examined in a third experiment, using sound synthesis in a test vehicle.
Technical Paper

Patch Transfer Function Approach for Analysis of Coupled Vibro-Acoustic Problems Involving Porous Materials

2014-06-30
2014-01-2092
In many application fields, such as automotive and aerospace, the full FE Biot model has been widely applied to vibro-acoustics problems involving poro-elastic materials in order to predict their structural and acoustic performance. The main drawback of this approach is however the large computational burden and the uncertainty of the input data (Biot parameters) that may lead to less accurate prediction. In order to overcome these disadvantages industry is asking for more efficient techniques. The vibro-acoustic behaviour of structures coupled with poroelastic trims and fluid cavities can be predicted by means of the Patch Transfer Function (PTF) approach. The PTF is a sub-structuring procedure that allows for coupling different sub-systems via impedance relations determined at their common interfaces. The coupling surfaces are discretised into elementary areas called patches.
Technical Paper

Inverse Characterization of Vibro-Acoustic Subsystems for Impedance-Based Substructuring Approaches

2020-09-30
2020-01-1582
Substructuring approaches are helpful methods to solve and understand vibro-acoustic problems involving systems as complex as a vehicle. In that case, the whole system is split into smaller, simpler to solve, subsystems. Substructuring approaches allow mixing different modeling “solvers” (closed form solutions, numerical simulations or experiments). This permits to reach higher frequencies or to solve bigger systems. Finally, one of the most interesting features of substructuring approaches is the possibility to combine numerical and experimental descriptions of subsystems. The latter point is particularly interesting when dealing with subdomains that remain difficult to model with numerical tools (assembly, trim, sandwich panels, porous materials, etc.). The Patch Transfer Functions (PTF) method is one of these substructuring approaches. It condenses information (impedance matrix) of subsystems on their coupling surfaces.
Journal Article

Implementation and Validation of the G-equation Model Coupled with Flamelet Libraries for Simulating Premixed Combustion in I.C. Engines

2009-04-20
2009-01-0709
The G-equation model was implemented in the commercial code ANSYS CFX and validated against experimental data in order to successfully simulate turbulent premixed combustion in internal combustion engines. The model is based on the level-set approach. Two transport equations are solved respectively for the G-scalar mean value, representing the local distance function from the time-averaged mean flame front, and its variance, correlated to the turbulent flame brush thickness. The model closure for tracking the flame front is based on an algebraic expression for the turbulent burning velocity. The composition of the reacted mixture is evaluated by coupling the code with flamelet libraries generated with the ANSYS CFX-RIF package by means of a reaction progress variable computed as a function of the G-related quantities.
Journal Article

Gaussian Processes for Transfer Path Analysis Applied on Vehicle Body Vibration Problems

2022-06-15
2022-01-0948
Transfer path analyses of vehicle bodies are widely considered as an important tool in the noise, vibration and harshness design process, as they enable the identification of the dominating transfer paths in vibration problems. It is highly beneficial to model uncertain parameters in early development stages in order to account for possible variations on the final component design. Therefore, parameter studies are conducted in order to account for the sensitivities of the transfer paths with respect to the varying input parameters of the chassis components. To date, these studies are mainly conducted by performing sampling-based finite element simulations. In the scope of a sensitivity analysis or parameter studies, however, a large amount of large-scale finite element simulations is required, which leads to extremely high computational costs and time expenses. This contribution presents a method to drastically reduce the computational burden of typical sampling-based simulations.
Technical Paper

Frequency and Temperature Dependent Stiffness and Damping Properties of Reduced Viscoelastic Structures Using Component Mode Synthesis (CMS)

2018-06-13
2018-01-1498
Model Order Reduction (MOR) methods such as Component Mode Synthesis (CMS) have been used in order to simulate large linear dynamic systems for many years and have reached a considerable level of saturation. These reduction methods have many advantages such as minimizing computational costs but also have restrictions. One of their disadvantages is that material damping characteristics can only be defined in form of Rayleigh damping. Another disadvantage is that the reduced order model can only represent one state of the structure determined in the generation process of the reduced matrices. In this paper we present a way to consider material damping in reduced matrices that contain one or more materials having different damping characteristics without the disadvantages of using Rayleigh damping.
Technical Paper

Efficient Modeling and Simulation of the Transverse Isotropic Stiffness and Damping Properties of Laminate Structures Using Finite Element Method

2020-09-30
2020-01-1573
The Noise Vibration and Harshness (NVH) characteristics and requirements of vehicles are changing as the automotive manufacturers turn their focus from developing and producing cars propelled by internal combustion engines (ICE) to electrified vehicles. This new strategic orientation enables them to offer products that are more efficient and environmentally friendly. Although electric powertrains have many advantages compared to their established predecessors they also bring new challenges that increase the difficulty of matching the high quality requirements of premium car producers especially regarding NVH. Electric motors are one of the most important sources of vibrations in electric vehicles.
Technical Paper

Development and Application of a New Mass Spectrometer Based Measurement System for Fast Online Monitoring of Oil Emission in the Raw Exhaust Gas of Combustion Engines

2002-10-21
2002-01-2713
An increasing environmental consciousness as well as the awareness for sustained preservation of natural resources causes new regulations for emissions and great efforts for fuel economy and increasing oil service intervals. For a better understanding of the process generating pollutants, the emissions of every phase of the combustion cycle have to be monitored online. Moreover, it is important to measure the raw exhaust gas during different driving cycles and investigate the influence of different parameters as for example changing engine operating conditions. The new mass spectrometer (MS) based measurement system allows the direct detection of unburned gaseous oil HC without tracers. The gas inlet system enables crank angle resolved monitoring of different raw exhaust gas compounds in the exhaust manifold or directly in the cylinder.
Technical Paper

Cylinder Heads for High Power Gasoline Engines - Thermomechanical Fatigue Life Prediction

2006-04-03
2006-01-0541
Increasing demands on engine efficiency and specific power have resulted in progressively higher loadings on internal components of combustion engines. Therefore the durability assessment of such components is increasingly in demand, triggered by both reliability and economic requirements. Within this context the TMF cylinder head simulation process established at BMW is presented in the following article. The numerical model is able to account for thermo-mechanical loading histories. These lead to a transient evolution of the material characteristics during the lifetime due to aging in aluminum alloys. Therefore a viscoplastic constitutive model is coupled with an aging model to handle the change in precipitation structure and the effect on the material properties, especially for non heat-treated secondary aluminum alloys. The local damage evolution is modeled based on the growth of micro cracks.
Technical Paper

Cycle Life Investigations on Different Li-Ion Cell Chemistries for PHEV Applications Based on Real Life Conditions

2012-04-16
2012-01-0656
Plug-In Hybrid Electric Vehicles (PHEV) are becoming increasingly important as an intermediate step on the roadmap to Battery Electric Vehicles (BEV). Li-Ion is the most important battery technology for future hybrid and electrical vehicles. Cycle life of batteries for automotive applications is a major concern of design and development on vehicles with electrified powertrain. Cell manufacturers present various cell chemistries based on Li-Ion technology. For choosing cells with the best cycle life performance appropriate test methods and criteria must be obtained. Cells must be stressed with accelerated aging methods, which correlate with real life conditions. There is always a conflict between high accelerating factors for fast results on the one hand and best accordance with reality on the other hand. Investigations are done on three different Li-Ion cell types which are applicable in the use of PHEVs.
Technical Paper

Continuos Failure Prediction Model for Nonlinear Load Paths in Successive Stamping and Crash Processes

2001-03-05
2001-01-1131
The validity of numerical simulations is still limited by the unknown failure of materials when nonlinear load paths in successive stamping and crash processes occur. Localized necking is the main mechanism for fractures in ductile sheet metal. The classical forming limit curve (FLC) is limited to linear strain paths. To include the effects of nonlinear strain paths a theoretical model for instability (algorithm CRACH) has been used. The algorithm has been developed on the basis of the Marciniak model [8]. The calibration and validation of this approach is done by a set of multistage experiments under static and dynamic strain rates for a mild steel.
Technical Paper

Approach to a Design of Experiments for Sound Quality Evaluations of Car Interior Adjusting Noises

2009-05-19
2009-01-2184
A widely common principle of sound quality engineering is the development of objective measures determining human perception. Beside stationary sound parts, auditory events that are based on time-variant attributes have a traceable influence on human perception, particularly in the field of product sound quality. In this paper the significance and identification of the relevant sound quality parameters for power seat adjusters are investigated with a specific design of experiments (DoE). This methodology was used to advance the efficiency of subjective tests. The necessity of an efficient design is given through a relatively high number of variable parameters and, furthermore, through the demands of a qualitative experiment with limited effort for each subject in the listening tests. Instead of investigating randomly picked sounds this approach concentrates on a systematic scanning of the parameter space.
X