Refine Your Search

Topic

Author

Search Results

Technical Paper

Wash off Resistant 1-Component Structural Adhesives

2006-04-03
2006-01-0975
The application of crash durable structural adhesives in modern cars design, to improve the driving durability, the overall vehicle stiffness, the crash resistance and to make real light weight constructions feasible is significantly gaining in importance. 1-component systems are already introduced in the market and used in automotive industries. Usually the use of these bonds in automotive industries is limited by a relatively low wash off resistance in the pre-treatment tanks of the paint shop. If no additional actions are taken, there is a severe risk of wash off of the adhesives up to the partial loss in functionality. Respectively contamination of the pre-treatment tanks and aftereffects damage the surface of the coated cars. To avoid wash off a thermal process (oven) to pre-gel the adhesive in the flanges of the Body-In-White (BIW)- bodies before entering the pre-treatment utility is necessary. This is a save but cost intensive solution.
Technical Paper

Virtual Validation of Assembly Processes with Digital Human Models — Optimizing the Human-Computer Interaction

2008-06-17
2008-01-1901
Today digital 3D human models are widely used to support the development of future products and in planning and designing production systems. However, these virtual models are generally not sufficiently intuitive and configuring accurate and real body postures is very time consuming. Furthermore, additionally using a human model to virtually examine manual assembly operations of a vehicle is currently synonymous with increased user inputs. In most cases, the user is required to have in-depth expertise in the deployed simulation system. In view of the problems described, in terms of human-computer interaction, it is essential to research and identify the requirements for simulation with digital human models. To this end, experienced staff members gathered the requirements which were then evaluated and weighted by the potential user community. Weaknesses of the simulation software will also be detected, permitting optimisation recommendations to be identified.
Journal Article

Virtual Assessment of Occupied Seat Vibration Transmissibility

2008-06-17
2008-01-1861
This paper presents an integrated simulation process which has been performed in order to assess the riding comfort performance of a vehicle seat system virtually. Present methods of seat comfort design rely on the extensive testing of numerous hardware prototypes. In order to overcome the limitations of this expensive and time-consuming process, and to fasten innovation, simulation-based design has to be used to predict the seat comfort performance very early in the seat design process, leading to a drastic reduction in the number of physical prototypes. The accurate prediction of the seat transfer function by numerical simulation requires a complete simulation chain, which takes into account the successive stages determining the final seat behaviour when submitted to vibrations. First the manufacturing stresses inside the cushion, resulting from the trimming process, are computed.
Journal Article

Variational Autoencoders for Dimensionality Reduction of Automotive Vibroacoustic Models

2022-06-15
2022-01-0941
In order to predict reality as accurately as possible leads to the fact that numerical models in automotive vibroacoustic problems become increasingly high dimensional. This makes applications with a large number of model evaluations, e.g. optimization tasks or uncertainty quantification hard to solve, as they become computationally very expensive. Engineers are thus faced with the challenge of making decisions based on a limited number of model evaluations, which increases the need for data-efficient methods and reduced order models. In this contribution, variational autoencoders (VAEs) are used to reduce the dimensionality of the vibroacoustic model of a vehicle body and to find a low-dimensional latent representation of the system.
Technical Paper

Transportation Fuels for the Future

2006-10-16
2006-21-0089
This paper analyzes the availability of fossil resources and the projected demand development for transport energy. A continuation of current trends would lead to a gap between fuel supply and demand in 10 to 15 years from now. Based on the 3 political key criteria (security of energy supply, greenhouse gas emission reductions, strengthening of the economy) potential alternative fuels are screened and analyzed according to their contributions towards these political goals. A scenario for the development of future fuels is presented.
Technical Paper

The Third Generation of Valvetrains - New Fully Variable Valvetrains for Throttle-Free Load Control

2000-03-06
2000-01-1227
The SI-engine has a disadvantage in fuel economy compared with a DI-Diesel engine. One of the major effects is the throttle-driven load control with its pumping losses. The main target is to reduce these losses in the thermodynamic process with a throttle-free load control. BMW has developed fully variable valve trains as a possible technical solution to realise a load control by regulating the valve lift and the closing time of the inlet valve. The essential variability can be achieved by fully variable mechanical valve trains or mechatronic systems both showing a robust running behavior in emissions and cyclic fluctuations. The camshaft driven mechanical system is based on the technology of the BMW Double-VANOS system. An additional variability makes it possible to shift the valve lift continuously in order to control the valve closing. The highest variability is given by a system with each valve being controlled seperatly.
Technical Paper

The European Union Mg-Engine Project - Generation of Material Property Data for Four Die Cast Mg-Alloys

2006-04-03
2006-01-0070
A specific objective of the European Mg-Engine project is to qualify at least two die cast Mg alloys with improved high temperature properties, in addition to satisfactory corrosion resistance, castability and costs. This paper discusses the selection criteria for high temperature alloys leading to four candidate alloys, AJ52A, AJ62A, AE44 and AE35. Tensile-, creep- and fatigue testing of standard die cast test specimens at different temperatures and conditions have led to a very large amount of material property data. Numerous examples are given to underline the potential for these alloys in high temperature automotive applications. The subsequent use of the basic property data in material models for design of automotive components is illustrated.
Journal Article

The Development of Exhaust Surface Temperature Models for 3D CFD Vehicle Thermal Management Simulations Part 1 - General Exhaust Configurations

2013-04-08
2013-01-0879
The thermal prediction of a vehicle under-body environment is of high importance in the design, optimization and management of vehicle power systems. Within the pre-development phase of a vehicle's production process, it is important to understand and determine regions of high thermally induced stress within critical under-body components. Therefore allowing engineers to modify the design or alter component material characteristics before the manufacture of hardware. As the exhaust system is one of the primary heat sources in a vehicle's under-body environment, it is vital to predict the thermal fluctuation of surface temperatures along corresponding exhaust components in order to achieve the correct thermal representation of the overall under-body heat transfer. This paper explores a new method for achieving higher accuracy exhaust surface temperature predictions.
Technical Paper

Solid Oxide Fuel Cell Auxiliary Power Unit - A Paradigm Shift in Electric Supply for Transportation

2000-11-01
2000-01-C070
Delphi Automotive Systems and BMW have been jointly developing Solid Oxide Fuel Cell (SOFC) technology for application in the transportation industry primarily as an on-board Auxiliary Power Unit (APU). In the first application of this joint program, the APU will be used to power an electric air conditioning system without the need for operating the vehicle engine. The SOFC-based APU technology has the potential to provide a paradigm shift in the supply of electric power for passenger cars. Furthermore, supplementing the conventional fuel with reformate in the internal combustion engine, extremely low emissions and high system efficiencies are possible. This is consistent with the increasing power demands in automobiles in the new era of more comfort and safety along with environmental friendliness.
Journal Article

Simulation of Underbody Contribution of Wind Noise in a Passenger Automobile

2013-05-13
2013-01-1932
Wind noise is a significant source of interior noise in automobiles at cruising conditions, potentially creating dissatisfaction with vehicle quality. While wind noise contributions at higher frequencies usually originate with transmission through greenhouse panels and sealing, the contribution coming from the underbody area often dominates the interior noise spectrum at lower frequencies. Continued pressure to reduce fuel consumption in new designs is causing more emphasis on aerodynamic performance, to reduce drag by careful management of underbody airflow at cruise. Simulation of this airflow by Computational Fluid Dynamics (CFD) tools allows early optimization of underbody shapes before expensive hardware prototypes are feasible. By combining unsteady CFD-predicted loads on the underbody panels with a structural acoustic model of the vehicle, underbody wind noise transmission could be considered in the early design phases.
Technical Paper

Simulation of Complex Movement Sequences in the Product Development of a Car Manufacturer

2003-06-17
2003-01-2194
Cutting development times in car manufacturing means bringing forward the knowledge processes. Simulations based directly on CAD data reduce or replace time-consuming hardware loops significantly and therefore make a significant contribution to this. Ergonomic product design is an area that is challenged as far as the further development of virtual methods is concerned. Simulation of the static and quasi-static positions of passengers inside the car is the current state of the art in ergonomic product design. For this reason, interest is strongly focused on the simulation of complex movement processes within the context of enhancing simulation tools. For the car manufacturer, the manner in which people enter and leave the car is of particular interest. Getting into the car is the customers' first actual contact with it. It may also develop into a serious problem for car drivers, as they get older.
Journal Article

Simulation Process for the Acoustical Excitation of DC-Link Film Capacitors in Highly Integrated Electrical Drivetrains

2020-09-30
2020-01-1500
The advancing electrification of the powertrain is giving rise to new challenges in the field of acoustics. Film capacitors used in power electronics are a potential source of high-frequency interfering noise since they are exposed to voltage harmonics. These voltage harmonics are caused by semiconductor switching operations that are necessary to convert the DC voltage of the battery into three-phase alternating current for an electrical machine. In order to predict the acoustic characteristics of the DC-link capacitor at an early stage of development, a multiphysical chain of effects has to be addressed to consider electrical and mechanical influences. In this paper, a new method to evaluate the excitation amplitude of film capacitor windings is presented. The corresponding amplitudes are calculated via an analytical strain based on electromechanical couplings of the dielectric within film capacitors.
Technical Paper

Sandwich Structure for Thermoplastic Body-Panels with Class-A Surface by Injection Molding

2006-04-03
2006-01-0131
Especially in horizontal applications of thermoplastic body-panels occurs a conflict between the required thermal stability (generally achieved with short glass fibers) and the high level surface finish as the reinforcements worsen the surface texture. The sandwich-molding procedure for bigger body-panels, developed further at BMW, offers an innovative solution to this problem. Two materials, one with good surface finish properties (material A) and another with glass fiber reinforcement (material B), are coinjected in a single process step. The result is a part with class-A surface (only material A visible at the surface), advanced mechanical and thermal properties. Additionally to an outstanding surface finish the body-panel exhibits small thermal expansion relevant for reduction of gaps to bordering parts.
Technical Paper

Research Results and Progress in LeaNOx II -A Co-operation for Lean NOx Abatement

2000-10-16
2000-01-2909
In a consortium of European industrial partners and research institutes, a combination of industrial development and scientific research was organised. The objective was to improve the catalytic NOx conversion for lean burn cars and heavy-duty trucks, taking into account boundary conditions for the fuel consumption. The project lasted for three years. During this period parallel research was conducted in research areas ranging from basic research based on a theoretical approach to full scale emission system development. NOx storage catalysts became a central part of the project. Catalysts were evaluated with respect to resistance towards sulphur poisoning. It was concluded that very low sulphur fuel is a necessity for efficient use of NOx trap technology. Additionally, attempts were made to develop methods for reactivating poisoned catalysts. Methods for short distance mixing were developed for the addition of reducing agent.
Technical Paper

Reinforced Light Metals for Automotive Applications

2007-04-16
2007-01-1228
Efficiency and dynamic behavior of a vehicle are strongly affected by its weight. Taking into consideration comfort, safety and emissions in modern automobiles, lightweight design is more of a challenge than ever in automotive engineering. Materials development plays an important role against this background, since significant weight decrease is made possible through the substitution of high density materials and more precise adjustment of material parameters to the functional requirements of components. Reinforced light metals, therefore, offer a promising approach due to their high strength to weight ratio. The paper gives an overview on matrix and reinforcement structures suited for the high volume output of the automotive industry. Further analytical and numerical approaches to describe the strengthening effects and the good mechanical characteristics of these composite materials are presented.
Technical Paper

Premium Clear Coat at BMW Group

2006-04-03
2006-01-0751
Automotive clear coats have a broad field of requirements to fulfill, e.g. weathering stability, stone chipping, chemical resistance, scratch resistance, and have to show a brilliant surface appearance. Beside this, the paint and repair process for high volume car manufacturing must be fulfilled with respect to costs and the environment. From the development point of view of a car manufacture interactions between these properties and the critical way of understanding and describing the value for the customer is shown. The conclusion of this scenario and a detailed benchmark study of different new clear coats guide to the development of the ‘Next generation’ of powder clear coats.
Technical Paper

Potentials of the Spray-Guided BMW DI Combustion System

2006-04-03
2006-01-1265
The spray-guided BMW DI combustion system eliminates the most important disadvantages of the wall-and air-guided 1st generation DI combustion systems. With its central injector position, the spray-guided system provides a stratified mixture at the spark plug and reduces wall wetting significantly. The low spray penetration and high spray stability of the outward-opening piezo injector allow an extension of the stratified engine map to higher engine load and speed. The piezo drive permits an extremely fast opening of the injector needle, thus enabling multiple injections with very short delay times and high flexibility for the calibration strategy to supply a very efficient combustion with low unburnt hydrocarbon and carbon monoxide emissions. Compared to a conventional throttled SI engine, the spray-guided system shows a fuel consumption potential of about 20% in the NEDC.
Technical Paper

Paint Bake Response on the Vehicle

2006-04-03
2006-01-0985
The average weight of a car has increased significantly in recent years due to higher crash requirements and demands in standard equipment. Therefore, BMW has decided to use aluminium for the body front end of the new BMW 5-series. During the paint process, the 6XXX-alloys currently adopted for the body front end exhibit a considerable increase in yield strength in the E-coat dryer. The increase of strength, the so-called paint bake response of 6XXX-alloys, needs to be fully exploited to meet the increasing demand of future passive safety concepts.
Technical Paper

Next Generation Catalysts are Turbulent:Development of Support and Coating

2004-03-08
2004-01-1488
Future catalyst systems need to be highly efficient in a limited packaging space. This normally leads to a design where the flow distribution, in front of the catalyst, is not perfectly uniform. Measurements on the flow test bench show that the implementation of perforated foils for the corrugated and flat foils has the capability to distribute the flow within the channels in the radial direction so that the maximum of the given catalyst surface is of use, even under very poor uniformity indices. Therefore a remarkable reduction in back pressure is measured. Emission results demonstrate cold start improvement due to reduced heat capacity. The use of LS - structured ( Longitudinal structured ) corrugated foils creates a high turbulence level within the single channels. The substrate lights-up earlier and the maximum conversion efficiency is reached more quickly.
Technical Paper

Nanomaterials - A New Dimension in Automotive Engineering

2006-04-03
2006-01-0105
Modern automotive engineering is more than ever affected by a multitude of different and sometimes contradictory requirements. Innovative materials play an increasingly important role in ensuring the fulfillment of these requirements. Conventional material development has always met these demands to a high standard. However, there will be challenges where nanotechnology will provide us with even more intelligent solutions. Consequently, automotive engineering makes more and more use of the large variety of new technological functionalities and innovative applications offered by nanotechnology. Nanotechnology involves property changes that only occur at the nanoscale. Some selected properties are suitable to be used in the design of tailored materials called nanomaterials, opening up a new dimension in automotive engineering. Nanomaterials promise valuable progress through new functionalities, in particular safety and quality rating applications or lightweight construction.
X