Refine Your Search

Topic

Author

Search Results

Journal Article

Virtual Assessment of Occupied Seat Vibration Transmissibility

2008-06-17
2008-01-1861
This paper presents an integrated simulation process which has been performed in order to assess the riding comfort performance of a vehicle seat system virtually. Present methods of seat comfort design rely on the extensive testing of numerous hardware prototypes. In order to overcome the limitations of this expensive and time-consuming process, and to fasten innovation, simulation-based design has to be used to predict the seat comfort performance very early in the seat design process, leading to a drastic reduction in the number of physical prototypes. The accurate prediction of the seat transfer function by numerical simulation requires a complete simulation chain, which takes into account the successive stages determining the final seat behaviour when submitted to vibrations. First the manufacturing stresses inside the cushion, resulting from the trimming process, are computed.
Technical Paper

Validation and Application of the 3-D CAD Manikin RAMSIS in Automotive Design

1999-03-01
1999-01-1270
This paper describes the validation of RAMSIS, a 3-D CAD human model for ergonomic vehicle evaluation. At GM NAO, the model’s capability to correctly predict position and posture in vehicle CAD environments was tested. H- and Eye point locations between RAMSIS manikins and their human counterparts were compared. At GM/SAAB the model’s postural discomfort predictability was evaluated. Changes in postural discomfort predictions of the RAMSIS manikins were compared to that of the human subjects when they evaluated two different driving buck conditions. We concluded that RAMSIS has good position, posture and postural discomfort prediction capabilities and is a useful CAD ergonomic evaluation and design tool for vehicle interiors.
Technical Paper

Use of Single Point Interface Measures for Characterization of Attachments

2005-05-16
2005-01-2388
Often components or subsystems are attached to other systems through multiple fasteners at multiple locations. Examples may include things like compressors, alternators, engine cradles, powertrain mounting systems, suspension systems, body structures or almost any other interface between components or subsystems. Often during early design stages, alternative component or subsystem configurations are being considered that can have very different interface characteristics, such as alternators with different number of mounting fasteners, or suspension systems with different number of body structure interface attachments. Given these different mounting configurations, it can be difficult to meaningfully compare the interface performance of the two components or subsystems.
Technical Paper

The Use of in Vehicle STL Testing to Correlate Subsystem Level SEA Models

2003-05-05
2003-01-1564
For the assessment of vehicle acoustics in the early design stages of a vehicle program, the use of full vehicle SEA models is becoming the standard analysis method in the US automotive industry. One benefit is that OEM's and Tier 1 suppliers are able to cascade lower level acoustic performance targets for NVH systems and components. Detailed SEA system level models can be used to assess the performance of systems such as dash panels, floors and doors, however, the results will be questionable until test data Is available. Correlation can be accomplished with buck testing, which is a common practice in the automotive industry for assessing the STL (sound transmission loss) of vehicle level components. The opportunity to conduct buck testing can be limited by the availability of representative bodies to be cut into bucks and the availability of a transmission loss suite with a suitably large opening.
Technical Paper

The Third Generation of Valvetrains - New Fully Variable Valvetrains for Throttle-Free Load Control

2000-03-06
2000-01-1227
The SI-engine has a disadvantage in fuel economy compared with a DI-Diesel engine. One of the major effects is the throttle-driven load control with its pumping losses. The main target is to reduce these losses in the thermodynamic process with a throttle-free load control. BMW has developed fully variable valve trains as a possible technical solution to realise a load control by regulating the valve lift and the closing time of the inlet valve. The essential variability can be achieved by fully variable mechanical valve trains or mechatronic systems both showing a robust running behavior in emissions and cyclic fluctuations. The camshaft driven mechanical system is based on the technology of the BMW Double-VANOS system. An additional variability makes it possible to shift the valve lift continuously in order to control the valve closing. The highest variability is given by a system with each valve being controlled seperatly.
Technical Paper

The Modified Martempering and its Effect on the Impact Toughness of a Cold Work Tool Steel

2011-10-04
2011-36-0325
The so-called Modified Martempering discussed in this work differs from the standard martempering by that the temperature of the quenching bath is below the Ms point. In spite of the fact the lower temperature increases the severity of quenching, this also usually avoids the bainite formation, and by this reason, it is possible to make a fair comparison between different processes, which result in different microstructures. The present study shows the results in terms of mechanical properties, impact resistance in special of a cold work tool steel class, after being heat treated by the isothermal modified martempering process, as well as a comparison with the conventional quenching and tempering process and the austempering as well.
Technical Paper

The Evolution of Microelectronics in Automotive Modules

2011-10-04
2011-36-0371
It has the aim to discuss the evolution of electronics components, integrated circuits, new transistors concepts and associate its importance in the automotive modules. Today, the challenge is to have devices which consume less power, suitable for high-energy radiation environment, less parasitic capacitances, high speed, easier device isolation, high gain, easier scale-down of threshold voltage, no latch-up and higher integration density. The improvement of those characteristics mentioned and others in the electronic devices enable the automotive industry to have a more robust product and give the possibility to integrate new features in comfort, safety, infotainment and telematics modules. Finally, the intention is to discuss advanced structures, such as the silicon-on-insulator (SOI) and show how it affects the electronics modules applied for the automotive area.
Journal Article

The Development of Exhaust Surface Temperature Models for 3D CFD Vehicle Thermal Management Simulations Part 1 - General Exhaust Configurations

2013-04-08
2013-01-0879
The thermal prediction of a vehicle under-body environment is of high importance in the design, optimization and management of vehicle power systems. Within the pre-development phase of a vehicle's production process, it is important to understand and determine regions of high thermally induced stress within critical under-body components. Therefore allowing engineers to modify the design or alter component material characteristics before the manufacture of hardware. As the exhaust system is one of the primary heat sources in a vehicle's under-body environment, it is vital to predict the thermal fluctuation of surface temperatures along corresponding exhaust components in order to achieve the correct thermal representation of the overall under-body heat transfer. This paper explores a new method for achieving higher accuracy exhaust surface temperature predictions.
Technical Paper

Study of Friction Reduction Potential in Light- Duty Diesel Engines by Lightweight Crankshaft Design Coupled with Low Viscosity Oil

2020-06-30
2020-37-0006
Over the last two decades, engine research was mainly focused on reducing fuel consumption in view of compliance with more stringent homologation cycles and customer expectations. As it is well known, the objective of overall engine efficiency optimization can be achieved only through the improvement of each element of the efficiency chain, of which mechanical constitutes one of the two key pillars (together with thermodynamics). In this framework, the friction reduction for each mechanical subsystem has been one of the most important topics of modern Diesel engine development. The present paper analyzes the crankshaft potential as contributor to the mechanical efficiency improvement, by investigating the synergistic impact of crankshaft design itself and oil viscosity characteristics (including new ultra-low-viscosity formulations already discussed by the author in [1]).
Technical Paper

Study of Friction Optimization Potential for Lubrication Circuits of Light-Duty Diesel Engines

2019-09-09
2019-24-0056
Over the last two decades, engine research has been mainly focused on reducing fuel consumption in view of compliance with stringent homologation targets and customer expectations. As it is well known, the objective of overall engine efficiency optimization can be achieved only through the improvement of each element of the efficiency chain, of which mechanical constitutes one of the two key pillars (together with thermodynamics). In this framework, the friction reduction for each mechanical subsystems has been one of the most important topics of modern Diesel engine development. In particular, the present paper analyzes the lubrication circuit potential as contributor to the mechanical efficiency improvement, by investigating the synergistic impact of oil circuit design, oil viscosity characteristics (including new ultra-low formulations) and thermal management. For this purpose, a combination of theoretical and experimental tools were used.
Technical Paper

Structural and Cost Evaluation of Snap Fits used in Connections of Vehicle Door Trim Panel Components with FEA Assist

2017-11-07
2017-36-0195
Among the most important finishing structures of a vehicle interior, the door trim panels reduce external noises, present ergonomic concepts generating comfort, improve appearance, and provide objects storage, knobs and buttons. The panels usually composed of several molded parts (trim, armrest, etc.) connected to each other also have structural function as support closing loads, protect occupants of door internal mechanisms, energy absorption in side impacts and resist misuse conditions. Therefore, these trims usually made of polymeric materials must to present good structural integrity, demanding appropriate connections between components to have good load distribution. The connections between parts can be made using bolts, interference fits (like self-locking), welding tubular plastic towers (heat stakes), or clips (such as snap fits) and last two are the most common due to be cheap and with good retention.
Technical Paper

Steering System Development in Premium Car Segment

2006-04-03
2006-01-0935
A top-of-the-range car customer not only expects exceptional vehicle design and quality but also a driving experience, which is out of the ordinary. Very harmonious interaction between vehicle dynamics and the steering system is required to offer clients such a consistent driving experience through generations of vehicle models. In this paper the basic properties of a premium driving experience are explored. It is shown that outstanding handling limits are a prerequisite, although most customers never experience such driving situations. In fact, on-center behavior is most crucial in enabling clients to experience part of premium driving performance, and the steering system is the key factor in delivering appropriate feedback to the driver by means of steering torque. Development procedures are presented to achieve the goals described above.
Technical Paper

Simulation applied to compaction process in sintered components for product performance optimization

2024-01-08
2023-36-0011
Sintered parts mechanical properties are very sensitive to final density, which inevitable cause an enormous density gradient in the green part coming from the compaction process strategy. The current experimental method to assess green density occurs mainly in set up by cutting the green parts in pieces and measuring its average density in a balance using Archimedes principle. Simulation is the more accurate method to verify gradient density and the main benefit would be the correlation with the critical region in terms of stresses obtained by FEA and try to pursue the optimization process. This paper shows a case study of a part that had your fatigue limit improved 1000% using compaction process simulation for better optimization.
Technical Paper

Simulating Complex Automotive Assembly Tasks using the HUMOSIM Framework

2009-06-09
2009-01-2279
Efficient methods for simulating operators performing part handling tasks in manufacturing plants are needed. The simulation of part handling motions is an important step towards the implementation of virtual manufacturing for the purpose of improving worker productivity and reducing injuries in the workplace. However, industrial assembly tasks are often complex and involve multiple interactions between workers and their environment. The purpose of this paper is to present a series of industrial simulations using the Human Motion Simulation Framework developed at the University of Michigan. Three automotive assembly operations spanning scenarios, such as small and large parts, tool use, walking, re-grasping, reaching inside a vehicle, etc. were selected.
Technical Paper

Sandwich Structure for Thermoplastic Body-Panels with Class-A Surface by Injection Molding

2006-04-03
2006-01-0131
Especially in horizontal applications of thermoplastic body-panels occurs a conflict between the required thermal stability (generally achieved with short glass fibers) and the high level surface finish as the reinforcements worsen the surface texture. The sandwich-molding procedure for bigger body-panels, developed further at BMW, offers an innovative solution to this problem. Two materials, one with good surface finish properties (material A) and another with glass fiber reinforcement (material B), are coinjected in a single process step. The result is a part with class-A surface (only material A visible at the surface), advanced mechanical and thermal properties. Additionally to an outstanding surface finish the body-panel exhibits small thermal expansion relevant for reduction of gaps to bordering parts.
Technical Paper

Robustness of RTV (Room Temperature Vulcanized Rubber) Joint Design in Electric Vehicles

2022-10-05
2022-28-0082
As the automobile industry is moving towards Electrical vehicles, it becomes very important to have low cost and robust solution to seal all the internal Battery sub systems. It’s a known fact that various IC engine Vehicles are already using Room temperature vulcanized rubber (RTV) for many metal and composite sealing interfaces. Nevertheless, it always needs a good structural design to have good sealing performance. For designing a robust RTV joint for composite structures, it becomes important to have standard RTV chamfers. Sometimes even with these standards, it becomes very costly in having warranty issues when we have weak structure around RTV chamfers. Any joint structure involves multiple design parameters which might impact the sealing performance. Some of the joint structural parameters should be well designed at the early phase of product development cycle, which otherwise will later add lot of cost in modifying the product with its integrated components.
Technical Paper

Reinforced Light Metals for Automotive Applications

2007-04-16
2007-01-1228
Efficiency and dynamic behavior of a vehicle are strongly affected by its weight. Taking into consideration comfort, safety and emissions in modern automobiles, lightweight design is more of a challenge than ever in automotive engineering. Materials development plays an important role against this background, since significant weight decrease is made possible through the substitution of high density materials and more precise adjustment of material parameters to the functional requirements of components. Reinforced light metals, therefore, offer a promising approach due to their high strength to weight ratio. The paper gives an overview on matrix and reinforcement structures suited for the high volume output of the automotive industry. Further analytical and numerical approaches to describe the strengthening effects and the good mechanical characteristics of these composite materials are presented.
Technical Paper

Rapid Spherical Near-Field Antenna Measurements for Vehicle Applications

2005-04-11
2005-01-0569
As more wireless services such as satellite radio (SDARS), navigation systems, OnStar, and mobile telephones are installed on GM vehicles, there is a need to make quick and accurate vehicle antenna pattern measurements. The interaction between vehicle and antenna must be included to ensure accurate vehicle antenna measurements. This implies that the size of the effective antenna should include both the antenna and vehicle interaction dimensions. For the frequency range of 500 MHz to 6 GHz, one solution is to use a spherical near-field system. The Satimo rapid probe array technology was selected to develop a vehicle antenna test system (ATS), which minimizes test time and maintains data accuracy. The ATS was designed to operate inside of an existing GM electromagnetic compatibility (EMC) anechoic chamber equipped with a nine-meter turntable.
Technical Paper

Quantification of Sternum Morphomics and Injury Data

2019-04-02
2019-01-1217
Crash safety researchers have an increased concern regarding the decreased thoracic deflection and the contributing injury causation factors among the elderly population. Sternum fractures are categorized as moderate severity injuries, but can have long term effects depending on the fragility and frailty of the occupant. Current research has provided detail on rib morphology, but very little information on sternum morphology, sternum fracture locations, and mechanisms of injury. The objective of this study is two-fold (1) quantify sternum morphology and (2) document sternum fracture locations using computed tomography (CT) scans and crash data. Thoracic CT scans from the University of Michigan Hospital database were used to measure thoracic depth, manubriosternal joint, sternum thickness and bone density. The sternum fracture locations and descriptions were extracted from 63 International Center for Automotive Medicine (ICAM) crash cases, of which 22 cases had corresponding CT scans.
Technical Paper

Predictive 3D-CFD Model for the Analysis of the Development of Soot Deposition Layer on Sensor Surfaces

2023-08-28
2023-24-0012
After-treatment sensors are used in the ECU feedback control to calibrate the engine operating parameters. Due to their contact with exhaust gases, especially NOx sensors are prone to soot deposition with a consequent decay of their performance. Several phenomena occur at the same time leading to sensor contamination: thermophoresis, unburnt hydrocarbons condensation and eddy diffusion of submicron particles. Conversely, soot combustion and shear forces may act in reducing soot deposition. This study proposes a predictive 3D-CFD model for the analysis of the development of soot deposition layer on the sensor surfaces. Alongside with the implementation of deposit and removal mechanisms, the effects on both thermal properties and shape of the surfaces are taken in account. The latter leads to obtain a more accurate and complete modelling of the phenomenon influencing the sensor overall performance.
X