Refine Your Search

Topic

Affiliation

Search Results

Journal Article

Visualization of Partially Premixed Combustion of Gasoline-like Fuel Using High Speed Imaging in a Constant Volume Vessel

2012-04-16
2012-01-1236
Combustion visualizations were carried out in a constant volume vessel to study the partially premixed combustion of a gasoline-like fuel using high speed imaging. The test fuel (G80H20) is composed by volume 80% commercial gasoline and 20% n-heptane. The effects of ambient gas composition, ambient temperature and injection pressure on G80H20 combustion characteristics were analyzed. Meanwhile, a comparison of the EGR effect on combustion process between G80H20 and diesel was made. Four ambient gas conditions that represent the in-cylinder gas compositions of a heavy-duty diesel engine with EGR ratios of 0%, 20%, 40% and 60% were used to simulate EGR conditions. Variables also include two ambient temperature (910K and 870K) and two injection pressure (20 MPa and 50 MPa) conditions.
Technical Paper

Visualization of Mixture Preparation in a Port-Fuel Injection Engine During Engine Warm-up

1995-10-01
952481
The fuel injection process in the port of a firing 4-valve SI engine at part load and 25°C head temperature was observed by a high speed video camera. Fuel was injected when the valve was closed. The reverse blow-down flow when the intake valve opens has been identified as an important factor in the mixture preparation process because it not only alters the thermal environment of the intake port, but also strip-atomizes the liquid film at the vicinity of the intake valve and carries the droplets away from the engine. In a series of “fuel-on” experiments, the fuel injected in the current cycle was observed to influence the fuel delivery to the engine in the subsequent cycles.
Technical Paper

Vibration Measurement in Flight

1937-01-01
370175
EQUIPMENT for measuring vibration in airplane structures and powerplants during actual flight is described in this paper. This development is the result of a cooperative research program carried out by the Bureau of Aeronautics of the U. S. Navy and the Massachusetts Institute of Technology with contributions of improvements in design and new features by the Sperry Gyroscope Co., Inc. In its essentials, the M.I.T.-Sperry Apparatus consists of a number of electrical pickup units which operate a central amplifying and recording unit. The recorder is a double-element photographic oscillograph. Each pickup is adapted especially to the type of vibration that it is intended to measure and is made so small that it does not appreciably affect the vibration characteristics of the member to which it is attached rigidly. By using a number of systematically placed pickups, all the necessary vibration information on an airplane can be recorded during a few short flights.
Technical Paper

Using Mass Spectrometry to Detect Ethanol and Acetaldehyde Emissions from a Direct Injection Spark Ignition Engine Operating on Ethanol/Gasoline Blends

2011-04-12
2011-01-1159
Ethanol and acetaldehyde emissions from a direct ignition spark ignition were measured using mass spectrometry. Previous methods focused on eliminating or minimizing interference from exhaust species with identical atomic mass and fragment ions created in ionization process. This paper describes a new technique which exploits the fragment ions from ethanol and acetaldehyde. A survey of mass spectra of all major species of exhaust gas was conducted. It was found that ethanol contributes most ions in mass number 31 and that no other gas species produces ions at this mass number. Acetaldehyde detection suffers more interference. Nevertheless, it was estimated that detection at mass number 43 is possible with 10% error from 2-methylbutane. This new technique was validated in an engine experiment. By running the engine with pure gasoline and E85, the validity of the technique can be checked.
Technical Paper

Understanding Interaction between Reactive Jets in Pre-Chamber Ignition of Gaseous Fuel

2023-04-11
2023-01-0225
In order to improve the ignition capacity and burning rate for spark-ignited engines, pre-chamber jet ignition is a promising technique to achieve fast premixed combustion and low pollutant emissions. However, few studies focus on the interaction between multiple reacting (i.e. flamelet) or reacted (i.e. radical) jets, its effect on ignition, exotherm and flow behaviors also remain to be revealed. This paper investigated two types of jet interaction under different pre-chamber structures, including the jet-crossing and unequal nozzle designs. Optical experiments under different conditions were conducted in a constant volume combustion chamber with CH4 as fuel, using simultaneous high speed schlieren and OH* chemiluminescence method. Meanwhile, computational fluid dynamics (CFD) simulations with CH4 and NH3/CH4 blend fuels were carried out using Converge software to provide further insights of turbulent flow and ignition process.
Journal Article

Transient Emissions Characteristics of a Turbocharged Engine Fuelled by Biodiesel Blends

2013-04-08
2013-01-1302
The effects of different biodiesel blends on engine-out emissions under various transient conditions were investigated in this study using fast response diagnostic equipment. The experimental work was conducted on a modern 3.0 L, V6 high pressure common rail diesel engine fuelled with mineral diesel (B0) and three different blends of rapeseed methyl esters (RME) (B30, B60, B100 by volume) without any modifications of engine parameters. DMS500, Fast FID and Fast CLD were used to measure particulate matter (PM), total hydrocarbon (THC) and nitrogen monoxide (NO) respectively. The tests were conducted during a 12 seconds period with two tests in which load and speed were changed simultaneously and one test with only load changing. The results show that as biodiesel blend ratio increased, total particle number (PN) and THC were decreased whereas NO was increased for all the three transient conditions.
Technical Paper

Time-Resolved, Speciated Emissions from an SI Engine During Starting and Warm-Up

1996-10-01
961955
A sampling system was developed to measure the evolution of the speciated hydrocarbon emissions from a single-cylinder SI engine in a simulated starting and warm-up procedure. A sequence of exhaust samples was drawn and stored for gas chromatograph analysis. The individual sampling aperture was set at 0.13 s which corresponds to ∼ 1 cycle at 900 rpm. The positions of the apertures (in time) were controlled by a computer and were spaced appropriately to capture the warm-up process. The time resolution was of the order of 1 to 2 cycles (at 900 rpm). Results for four different fuels are reported: n-pentane/iso-octane mixture at volume ratio of 20/80 to study the effect of a light fuel component in the mixture; n-decane/iso-octane mixture at 10/90 to study the effect of a heavy fuel component in the mixture; m-xylene and iso-octane at 25/75 to study the effect of an aromatics in the mixture; and a calibration gasoline.
Technical Paper

Throttle Movement Rate Effects on Transient Fuel Compensation in a Port-Fuel-Injected SI Engine

2000-06-19
2000-01-1937
Throttle ramp rate effects on the in-cylinder fuel/air (F/A) excursion was studied in a production engine. The fuel delivered to the cylinder per cycle was measured in-cylinder by a Fast Response Flame Ionization detector. Intake pressure was ramped from 0.4 to 0.9 bar. Under slow ramp rates (∼1 s ramp time), the Engine Electronic Control (EEC) unit provided the correct compensation for delivering a stoichiometric mixture to the cylinder throughout the transient. At fast ramp rates (a fraction of a second ramps), a lean spike followed by a rich one were observed. Based on the actual fuel injected in each cycle during the transient, a x-τ model using a single set of x and τ values reproduced the cycle-to-cycle in-cylinder F/A response for all the throttle ramp rates.
Technical Paper

Thermodynamic Loss at Component Interfaces in Stirling Cycles

1992-08-03
929468
The paper considers the thermodynamic irreversibility in Stirling cycle machines at the interface between components with different thermodynamic characteristics. The approach of the paper is to consider the simplest possible cases and to focus on the factors that influence the thermodynamic losses. For example, an ideal adiabatic cylinder facing an ideal isothermal heat exchanger is considered. If there is no mixing in the cylinder (gas remains one dimensionally stratified), there will be no loss (irreversibility) if the gas motion is in phase with the gas pressure changes. If there is a phase shift, as required to have a network for the cylinder, there will be a loss (entropy generation) because the gas will not match the heat exchanger temperature. There will also be a loss if the gas in the cylinder is mixed rather than stratified. Similar simple interface conditions can be considered between components and interconnecting open volumes and between heat exchangers and regenerators.
Technical Paper

Thermal Management and Control in Testing Packaged Integrated Circuit (IC) Devices

1999-08-02
1999-01-2723
This paper describes the thermal management and design challenges of testing packaged integrated circuit (IC) devices, specifically device thermal conditioning and device-under-test (DUT) temperature control. The approach taken is to discuss the individual thermal design issues as defined by the device type (e.g. memory, microcontroller) and tester capabilities. The influence of performance-parameter specifications, such as the DUT parallelism, test time, index time, test-temperature range and test-temperature tolerance are examined. An understanding of these performance requirements and design constraints enables consideration of existing test handler thermal processing systems (e.g., gravity feed, pick and place), future test handler thermal concepts, and future high-parallelism testing needs for high-wattage memory and microprocessor devices. New thermal designs in several of these areas are described.
Technical Paper

The Theory of Cost Risk in Design

1999-03-01
1999-01-0495
In a recent paper (Hoult & Meador, [1]) a novel method of estimating the costs of parts, and assemblies of parts, was presented. This paper proposed that the metric for increments of cost was the function log (dimension/tolerance). Although such log functions have a history,given in [1], starting with Boltzman and Shannon, it is curious that it arises in cost models. In particular, the thermodynamic basis of information theory, given by Shannon [2], seems quite implausible in the present context. In [1], we called the cost theory “Complexity Theory”, mainly to distinguish it from information theory. A major purpose of the present paper is to present a rigorous argument of how the log function arises in the present context. It happens that the agrument hinges on two key issues: properties of the machine making or assembling the part, and a certain limit process. Neither involves thermodynamic reasoning.
Technical Paper

The Study of Friction between Piston Ring and Different Cylinder Liners using Floating Liner Engine - Part 1

2012-04-16
2012-01-1334
The objective of this work was to develop an experimental system to support development and validation of a model for the lubrication of two-piece Twin-Land-Oil-Control-Rings (hereafter mentioned as TLOCR). To do so, a floating liner engine was modified by opening the head and crankcase. Additionally, only TLOCR was installed together with a piston that has 100 micron cold clearance to minimize the contribution of the skirt to total friction. Friction traces, FMEP trend, and repeatability have been examined to guarantee the reliability of the experiment results. Then, engine speed, liner temperature, ring tension, and land widths were changed in a wide range to ensure all three lubrication regimes were covered in the experiments.
Technical Paper

The Mars Gravity Biosatellite: Innovations in Murine Motion Analysis and Life Support

2005-07-11
2005-01-2788
The MIT-based Mars Gravity Biosatellite payload engineering team has been engaged in designing and prototyping sensor and control systems for deployment within the rodent housing zone of the satellite, including novel video processing and atmospheric management tools. The video module will be a fully autonomous real-time analysis system that takes raw video footage of the specimen mice as input and distills those parameters which are of primary physiological importance from a scientific research perspective. Such signals include activity level, average velocity and rearing behavior, all of which will serve as indicators of animal health and vestibular function within the artificial gravity environment. Unlike raw video, these parameters require minimal storage space and can be readily transmitted to earth over a radio link of very low bandwidth.
Technical Paper

The Impact of Injector Deposits on Spray and Particulate Emission of Advanced Gasoline Direct Injection Vehicle

2016-10-17
2016-01-2284
Gasoline Direct Injection (GDI) engines have developed rapidly in recent years driven by fuel efficiency and consumption requirements, but face challenges such as injector deposits and particulate emissions compared to Port Fuel Injection (PFI) engines. While the mechanisms of GDI injector deposits formation and that of particulate emissions have been respectively revealed well, the impact of GDI injector deposits and their relation to particulate emissions have not yet been understood very well through systematic approach to investigate vehicle emissions together with injector spray analysis. In this paper, an experimental study was conducted on a GDI vehicle produced by a Chinese Original Equipment Manufacturer (OEM) and an optical spray test bench to determine the impact of injector deposits on spray and particulate emissions.
Technical Paper

The Impact of GDI Injector Deposits on Engine Combustion and Emission

2017-10-08
2017-01-2248
Gasoline direct injection (GDI) engine technology is now widely used due to its high fuel efficiency and low CO2 emissions. However, particulate emissions pose one challenge to GDI technology, particularly in the presence of fuel injector deposits. In this paper, a 4-cylinder turbocharged GDI engine in the Chinese market was selected and operated at 2000rpm and 3bar BMEP condition for 55 hours to accumulate injector deposits. The engine spark timing, cylinder pressure, combustion duration, brake specific fuel consumption (BSFC), gaseous pollutants which include total hydro carbon (THC), NOx (NO and NO2) and carbon dioxide (CO), and particulate emissions were measured before and after the injector fouling test at eight different operating conditions. Test results indicated that mild injector fouling can result in an effect on engine combustion and emissions despite a small change in injector flow rate and pulse width.
Journal Article

The Effects of Charge Motion and Laminar Flame Speed on Late Robust Combustion in a Spark-Ignition Engine

2010-04-12
2010-01-0350
The effects of charge motion and laminar flame speeds on combustion and exhaust temperature have been studied by using an air jet in the intake flow to produce an adjustable swirl or tumble motion, and by replacing the nitrogen in the intake air by argon or CO₂, thereby increasing or decreasing the laminar flame speed. The objective is to examine the "Late Robust Combustion" concept: whether there are opportunities for producing a high exhaust temperature using retarded combustion to facilitate catalyst warm-up, while at the same time, keeping an acceptable cycle-to-cycle torque variation as measured by the coefficient of variation (COV) of the net indicated mean effective pressure (NIMEP). The operating condition of interest is at the fast idle period of a cold start with engine speed at 1400 RPM and NIMEP at 2.6 bar. A fast burn could be produced by appropriate charge motion. The combustion phasing is primarily a function of the spark timing.
Technical Paper

THE VOLUMETRIC EFFICIENCY OF FOUR-STROKE ENGINES

1952-01-01
520259
PARAMOUNT among the problems relating to the efficiency of the internal-combustion engine is that of breathing capacity, or air consumption. Considering volumetric efficiency to be the most valuable parameter in an analytical or experimental approach to this problem, the authors of this paper have devoted several years of study to this factor in relation to 4-stroke engines. The studies have resulted in extensive findings, some of which have already been published. This paper attempts to bring together in readable form the results of the work to date, including both published and unpublished data. The authors discuss in detail the effect of volumetric efficiency on operating variables, piston speed, inlet-valve flow capacity, cylinder design, and size. They introduce a gulp factor, the inlet-valve Mach index, and explain how this factor can be used to guide engineers.
Technical Paper

Super-Twisting Second-Order Sliding Mode Control for Automated Drifting of Distributed Electric Vehicles

2020-04-14
2020-01-0209
Studying drifting dynamics and control could extend the usable state-space beyond handling limits and maximize the potential safety benefits of autonomous vehicles. Distributed electric vehicles provide more possibilities for drifting control with better grip and larger maximum drift angle. Under the state of drifting, the distributed electric vehicle is a typical nonlinear over-actuated system with actuator redundancy, and the coupling of input vectors impedes the direct use of control algorithm of upper. This paper proposes a novel automated drifting controller for the distributed electric vehicle. First, the nonlinear over-actuated system, comprised of driving system, braking system and steering system, is formulated and transformed to a square system through proposed integrative recombination method of control channel, making general nonlinear control algorithms suitable for this system.
Technical Paper

Substitution of Steam for Nitrogen as a Working Fluid in Atmosphere Free Spark Ignition Engines - Theory and Test Results for Steam, Oxygen, and Fuel

1962-01-01
620235
This paper summarizes the results of both the preliminary studies and the initial cycle tests of a unique type of IC engine capable of operating in the absence of an atmosphere. This engine has been designed specifically for use in the general space program, and it is intended to satisfy requirements of high power to weight ratio, reliability, compactness, and short development time. The history of the en-engine's development is discussed together with problems encountered in the study. However, primary emphasis is on the recently conducted cycle tests.
X