Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

The DOE/NREL Next Generation Natural Gas Vehicle Program - An Overview

2001-05-14
2001-01-2068
This paper summarizes the Next Generation Natural Gas Vehicle (NG-NGV) Program that is led by the U.S. Department Of Energy's (DOE's) Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of this program is to develop and implement one Class 3-6 compressed natural gas (CNG) prototype vehicle and one Class 7-8 liquefied natural gas (LNG) prototype vehicle in the 2004 to 2007 timeframe. OHVT intends for these vehicles to have 0.5 g/bhp-hr or lower emissions of oxides of nitrogen (NOx) by 2004 and 0.2 g/bhp-hr or lower NOx by 2007. These vehicles will also have particulate matter (PM) emissions of 0.01 g/bhp-hr or lower by 2004. In addition to ambitious emissions goals, these vehicles will target life-cycle economics that are compatible with their conventionally fueled counterparts.
Technical Paper

Reducing Costs for Electroplaning Zinc Die Casting by Conserving Nickel

1971-02-01
710197
The cost of electroplating zinc die castings can be reduced by employing microcracked or microporous chromium in place of conventional chromium; the former is more effective in improving corrosion performance while conserving nickel. Exposure data are examined and specifications for nickel and chromium content are presented.
Technical Paper

Recent Advances in Aluminum Castings

1964-01-01
640092
Increased research devoted to the foundry arts has resulted in a greater understanding of the factors essential in producing high quality castings. One outgrowth of these studies has been the development of premium quality aluminum castings. The procedures used for the production of premium quality castings are reviewed, and the improvements in properties that result from adequate attention to these procedures are described.
Technical Paper

Performance of a NOx Adsorber Catalyst/Diesel Particle Filter System for a Heavy-Duty Engine During a 2000-Hour Endurance Test

2005-04-11
2005-01-1760
In this study, a 15-L heavy-duty diesel engine and an emission control system consisting of diesel oxidation catalysts, NOx adsorber catalysts, and diesel particle filters were evaluated over the course of a 2000 hour aging study. The work is a follow-on to a previously documented development effort to establish system regeneration and sulfur management strategies. The study is one of five projects being conducted as part of the U.S. Department of Energy's Advanced Petroleum Based Fuels - Diesel Emission Control (APBF-DEC) activity. The primary objective of the study was to determine if the significant NOx and PM reduction efficiency (>90%) demonstrated in the development work could be maintained over time with a 15-ppm sulfur diesel fuel. The study showed that high NOx reduction efficiency can be restored after 2000 hours of operation and 23 desulfation cycles.
Technical Paper

Fuel Sulfur Effects on a Medium-Duty Diesel Pick-Up with a NOX Adsorber, Diesel Particle Filter Emissions Control System: 2000-Hour Aging Results

2006-04-03
2006-01-0425
Increasing fuel costs and the desire for reduced dependence on foreign oil have brought the diesel engine to the forefront of future medium-duty vehicle applications in the United States due to its higher thermal efficiency and superior durability. One of the obstacles to the increased use of diesel engines in this platform is the Tier 2 emission standards. In order to succeed, diesel vehicles must comply with emissions standards while maintaining their excellent fuel economy. The availability of technologies-such as common rail fuel injection systems, low-sulfur diesel fuel, oxides of nitrogen (NOX) adsorber catalysts or NACs, and diesel particle filters (DPFs)-allows for the development of powertrain systems that have the potential to comply with these future requirements. In support of this, the U.S. Department of Energy (DOE) has engaged in several test projects under the Advanced Petroleum Based Fuels-Diesel Emission Control (APBF-DEC) activity [1, 2, 3, 4, 5].
Technical Paper

Engineering Requirements for Culturing of Hydrogenomonas Bacteria

1967-02-01
670854
Experimental results obtained with a continuous culture system for the cultivation of Hydrogenomonas eutropha for waste management in a life-support system indicate that a reliable and stable system can be designed under the present state-of-the-art. The present system provides for control of hydrogen, oxygen, carbon dioxide, pH, cell density, temperature, urea, and ammonia during growth. The culture system design is adaptable to operation in a zero-gravity field, and should be adaptable to integration with proposed water electrolysis and product recovery systems for waste management in an overall life support system.
Technical Paper

Emissions from Trucks and Buses Powered by Cummins L-10 Natural Gas Engines

1998-05-04
981393
Both field research and certification data show that the lean burn natural gas powered spark ignition engines offer particulate matter (PM) reduction with respect to equivalent diesel power plants. Concerns over PM inventory make these engines attractive despite the loss of fuel economy associated with throttled operation. Early versions of the Cummins L-10 natural gas engines employed a mixer to establish air/fuel ratio. Emissions measurements by the West Virginia University Transportable Heavy Duty Emissions Testing Laboratories on Cummins L-10 powered transit buses revealed the potential to offer low emissions of PM and oxides of nitrogen, (NOx) but variations in the mixture could cause emissions of NOx, carbon monoxide and hydrocarbons to rise. This was readily corrected through mixer repair or readjustment. Newer versions of the L-10 engine employ a more sophisticated fueling scheme with feedback control from a wide range oxygen sensor.
Technical Paper

Effects of Mid-Level Ethanol Blends on Conventional Vehicle Emissions

2009-11-02
2009-01-2723
Tests were conducted during 2008 on 16 late-model, conventional vehicles (1999 through 2007) to determine short-term effects of mid-level ethanol blends on performance and emissions. Vehicle odometer readings ranged from 10,000 to 100,000 miles, and all vehicles conformed to federal emissions requirements for their federal certification level. The LA92 drive cycle, also known as the Unified Cycle, was used for testing as it was considered to more accurately represent real-world acceleration rates and speeds than the Federal Test Procedure (FTP) used for emissions certification testing. Test fuels were splash-blends of up to 20 volume percent ethanol with federal certification gasoline. Both regulated and unregulated air-toxic emissions were measured. For the aggregate 16-vehicle fleet, increasing ethanol content resulted in reductions in average composite emissions of both NMHC and CO and increases in average emissions of ethanol and aldehydes.
Technical Paper

Alternative Fuel Truck Evaluation Project - Design and Preliminary Results

1998-05-04
981392
The objective of this project, which is supported by the U.S. Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL), is to provide a comprehensive comparison of heavy-duty trucks operating on alternative fuels and diesel fuel. Data collection from up to eight sites is planned. This paper summarizes the design of the project and early results from the first two sites. Data collection is planned for operations, maintenance, truck system descriptions, emissions, duty cycle, safety incidents, and capital costs and operating costs associated with the use of alternative fuels in trucking.
Technical Paper

Adherence of Paint on Chromium-Plated Zinc Die Castings

1963-01-01
630169
After several alternative procedures were investigated for preparing chromium-plated zinc die castings for painting, one procedure proved best for contaminated chromium surfaces. This procedure included six steps: (1) alkaline spray cleaning, (2) electrolytic alkaline cleaning, (3) rinsing with high-purity water with a specific resistance of 500,000-700,000 ohm-cm, (4) immersing in chromic acid solution (0.05 oz/gal) at 150 F for 2 minutes, or treating cathodically in 0.7 oz/gal of sodium dichromate with a current density of 0.05 amp/sq ft for 30-60 sec, (5) rinsing with high-purity water, (6) forced-air drying with filtered air at 15 psi. Good adherence was obtained by following these procedures and painting with a single coat of acrylic or alkyd-resin paint. Other preparation procedures resulted in inferior paint adherence.
X