Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Simulations of Thin Film Dynamics on a Flat Plate and an Airfoil

2019-06-10
2019-01-1938
The goal of the present study is to investigate the dynamics of a thin water film on a flat plate and an airfoil using direct numerical simulation (DNS). The first case for a wetted flat plate is used to model former experiments and investigate the dynamics of a wind-driven water film. The second case for a thin film on a NACA 0012 airfoil of chord length 0.5 m is used to investigate the dynamics of a wind-driven water film on a curved surface. Particular attention is paid to the interaction between the liquid film and the air shear-layer above the film. As the incoming airflow moves over the thin water film, instability is triggered at the gas-liquid interface. Interfacial waves develop and are advected downstream. The interaction between the air flow and the interfacial waves induces shedding vortices near the interface, which in turn perturb the liquid film farther downstream. Simulations are performed using the open source multiphase flow solvers, Gerris and Basilisk.
Technical Paper

Photogrammetric Frost Roughness Measurements in Cold-Soaked Conditions

2019-06-10
2019-01-1970
Cold-soaked fuel frost (CSFF) is a form of aircraft wing contamination that occurs when a vehicle caries sufficient fuel for multiple trips or take-offs and landings. Following the first trip, which may reach altitudes above 10,000 m (33,000 ft), the fuel for the subsequent trips is carried in the wing tanks and may reach temperatures below -25 °C. In certain times of the year at some airports, temperatures and humidity levels will form CSFF on the aircraft wing surfaces over the fuel tanks. Unless an exemption is granted for the specific aircraft model, aircraft are not allowed to takeoff if the wing surfaces are contaminated by frost. Because aircraft operators desire to minimize vehicle time spent at airports, aircraft manufacturers are expected to pursue designs that safely operate with CSFF at takeoff and to pursue certification exemptions for aircraft models enabling CSFF takeoffs.
Journal Article

Influence of Freestream Temperature on Ice Accretion Roughness

2019-06-10
2019-01-1993
The influence of freestream static temperature on roughness temporal evolution and spatial variation was investigated in the Icing Research Tunnel (IRT) at NASA Glenn Research Center. A 53.34 cm (21-in.) NACA 0012 airfoil model and a 152.4 cm (60-in.) HAARP-II business jet airfoil model were exposed to Appendix C clouds for fixed exposure times and thus fixed ice accumulation parameter. For the base conditions, the static temperature was varied to produce different stagnation point freezing fractions. The resulting ice shapes were then scanned using a ROMER Absolute Arm system and analyzed using the self-organizing map approach of McClain and Kreeger. The ice accretion prediction program LEWICE was further used to aid in interrogations of the ice accretion point clouds by using the predicted surface variations of local collection efficiency.
Technical Paper

Cold Soaked Fuel Frost Roughness Evolution on a Simulated Integrated Fuel Tank with Aluminum Skins

2023-06-15
2023-01-1442
Cold soaked fuel frost (CSFF) is frost that forms on aircraft wing surfaces following a flight because of cold excess fuel remaining in integrated fuel tanks. Previous investigations by Zhang et al. (2021a) and Zhang et al. (2021b) have focused on experimental measurements and correlation development for frost observed using a small frost wind tunnel employing a thermo-electric cooler to impose a surface temperature for a range of environmental conditions. To model the CSFF approach in more detail, an experimental facility was developed and described by McClain et al. (2020) using a thermal model of an integrated wing fuel tank placed inside of a climatic chamber. In this paper, experimental measurements of CSFF are presented using two aluminum wing skins. One of the skins was created using an aluminum rib structure, and the other skin was created without the rib.
Technical Paper

A Reevaluation of Appendix C Ice Roughness Using Laser Scanning

2015-06-15
2015-01-2098
Many studies have been performed to quantify the formation and evolution of roughness on ice shapes created in Appendix C icing conditions, which exhibits supercooled liquid droplets ranging from 1-50 µm. For example Anderson and Shin (1997), Anderson et al. (1998), and Shin (1994) represent early studies of ice roughness during short-duration icing events measured in the Icing Research Tunnel at the NASA Glenn Research Center. In the historical literature, image analysis techniques were employed to characterize the roughness. Using multiple images of the roughness elements, these studies of roughness focused on extracting parametric representations of ice roughness elements. While the image analysis approach enabled many insights into icing physics, recent improvements in laser scanning approaches have revolutionized the process of ice accretion shape characterization.
X