Refine Your Search

Topic

Search Results

Technical Paper

Topology Optimization of Hybrid Electric Vehicle Frame Using Multi-Loading Cases Optimization

2008-06-23
2008-01-1734
This presentation evaluates the contribution of multi-objective programming scheme for the conceptual design of the Hybrid Electric Vehicle frame's structure using topological optimization. The compromise programming method was applied to describe the statically loaded multicompliance topology optimization. Solid Isotropic Material with Penalization (SIMP) was used as the interpolation scheme to indicate the dependence of material modulus upon regularized element densities. The sequential convex programming approach was applied to solve the optimization problem. The application on the chassis frame was used to demonstrate the characteristics of the presented methodologies based on the commercial software package OptiStruct.
Technical Paper

Three-Dimensional CFD Analysis of Semi-Direct Injection Hydraulic Free Piston Engine

2016-04-05
2016-01-1018
In this paper, a new method for the driving of the hydraulic free piston engine (HFPE) is proposed. Hydraulic differential drive achieves the compression stroke automatically rather than special recovery system, which has a great influence on the engine dynamic performance. The purpose of this paper is to solve the key operation and control problems for HFPE to commix fuel with air. HFPE adopts two-stroke loop-scavenging and semi-direct injection. The semi-direct injection nozzle is located in the liner wall inside the main intake port, with the axes oriented towards the piston at the Bottom Dead Center (BDC). Different scavenging pressures and injection angles result in different impacts on the mixture of fuel and air in the cylinder. This study analyzes the changes of the combustion heat release rate by simulation.
Technical Paper

Soot and PAH Formation Characteristics of Methanol-Gasoline Belnds in Laminar Coflow Diffusion Flames

2018-04-03
2018-01-0357
Particulate matter emissions are becoming a big issue for GDI engines as the emission regulations being more stringent. Methanol has been considered to be an important alternative fuel to reduce soot emissions. To understand the effect of methanol addition on soot and polycyclic aromatic hydrocarbons (PAHs) formation, the 2-D distributions of soot volume fraction and different size PAHs relative concentrations in methanol/gasoline laminar diffusion flames were measured by TC-LII and PLIF techniques. The effect of methanol was investigated under the conditions of the same carbon flow and the same flame height. The methanol volume fraction was set as M0/20/40/60/80. The results showed that the natural luminescent flame lift-off height and soot lift-off height increases consistently with the increasing methanol content due to the increase of outlet velocity of fuel vapor.
Technical Paper

Simulation of Straight-Line Type Assist Characteristic of Electric Power-Assisted Steering

2004-03-08
2004-01-1107
Electric Power-Assisted Steering (EPAS) is a new power steering technology that will define the future of vehicle steering. The assist of EPAS is the function of the steering wheel torque and vehicle velocity. The assist characteristic of EPAS is set by control software, which is one of the key issues of EPAS. The straight-line type assist characteristic has been used in some current EPAS products, but its influence on the steering maneuverability and road feel hasn't been explicitly studied in theory. In this paper, the straight-line type assist characteristic is analyzed theoretically. Then a whole vehicle dynamic model used to study the straight-line type assist characteristic is built with ADAMS/Car and validated with DCF (Driver Control Files) mode of ADAMS/Car. Based on the whole vehicle dynamic model, the straight-line type assist characteristic's influence on the steering maneuverability and road feel is investigated.
Technical Paper

Research on the UML-based Modeling of Embedded Software for Diesel Engine Control System

2013-09-08
2013-24-0135
The method and steps for software modeling of the embedded control systems for diesel engine based on UML are described in this paper. In order to meet the software function and the features of the system, object-oriented modeling for diesel engine embedded control software system has been implemented. Requirements are depicted by use case diagram and the logic structure is depicted by class diagram. According to the domain knowledge and the class diagram, the sequence diagram and state diagram are developed to describe the dynamic behavior of the system. The level of software development has been enhanced to the system level by software modeling. It focuses on the automotive field, and can be easy to grasp the problem from the overall perspective and discover software design problems at the early stage. It is also convenient to solve the problems caused by the change of requirements. The model has an excellent flexibility so that it can be applied to different software platforms.
Technical Paper

Research on the Cylinder-by-cylinder Variations Detection and Control Algorithm of Diesel Engine

2015-04-14
2015-01-1644
The cylinder-by-cylinder variations have many bad impacts on the engine performance, such as increasing the engine speed fluctuation, enlarging the torsional vibration and noise. To deal with this problem, the impact mechanism of cylinder-by-cylinder variations on low order torsional vibration has been studied in this paper, and subsequently a new individual cylinder control strategy was designed by processing the instantaneous crankshaft rotation speed signal, detecting the cylinder-by-cylinder variation and using feed-back control. The acceleration characteristics of each cylinder in each engine cycle were compared with each other to extract the variation index. The feed-back control algorithm was based on the regulation of the fuel injection according to the detected variation level.
Technical Paper

Research on Temperature Stability of an Independent Energy Supply Device with Organic Rankine Cycles Based on Hydraulic Retarder

2017-09-22
2017-01-7003
Hydraulic retarder, as an auxiliary braking device, is widely used in commercial vehicles. Nowadays, the hydraulic retarder’s internal oil is mainly cooled by the coolant circuit directly. It not only aggravates the load of engine cooling system, but also makes the abundant heat energy not be recycled properly. In this study, an independent energy supply device with organic Rankine cycles is applied to solve the problems above. In the structure of this energy supply device, the evaporator’s inlet and outlet is connected in parallel with the oil outlet and inlet of the retarder respectively. A part of oil enters the evaporator to transfer heat with the organic fluid, and the rest of oil enters the oil-water heat exchanger to be cooled by the coolant circuit. According to the different braking conditions of the retarder, the oil temperature in the inlet of the hydraulic retarder can be kept within the proper range through adjusting the oil flow rate into the evaporator properly.
Technical Paper

Research on Regenerative Braking Control Strategy under High Charge State Using Prescribed Performance Prediction Control

2022-10-28
2022-01-7041
To reduce the energy consumption level of electric vehicles, the working range of the regenerative braking system will gradually expand to the high state of charge of the battery. The time delay in the control signal transmission path of the high state of charge regenerative braking control process will affect the regenerative braking. At the same time, regenerative braking under a high state of charge puts forward higher requirements for the control accuracy of regenerative current. In the research of this paper, the motor model, battery model, and vehicle dynamics model are firstly established by using MATLAB/Simulink, and the dynamic relationship between regenerative current and regenerative braking torque is analyzed at the same time. Considering the system time delay, this paper proposes a high-charge regenerative braking control strategy (SPPC) that combines Smith prediction and prescribed performance control.
Technical Paper

Research on Performance of Pulsed Twin-Fluid Injector and Its Application on a Spark Ignition UAV Engine

2021-04-06
2021-01-0651
The principal objective of the present work is to investigate the fundamental characteristics of a commercially available outwardly opening twin-fluid injector, which utilizes air-assisted atomization principle to attain pulse-type injection of fuel-air mixture. The electromagnetic characteristics of this injector were simulated and the effects of dominating parameters on the electromagnetic force to drive injector were ascertained. On that basis, this paper elaborates on the fundamental characteristics of air-assisted spray using gasoline and kerosene with the employment of two types of optical testing techniques. The spray morphological evolution under varied fuel injection durations and ambient pressures were captured with high-speed shadowgraph thus the corresponding external macroscopic characteristics were obtained and further compared. Spray droplet velocity and diameter at fixed monitoring location were measured by using PDPA (Phase Doppler Particle Analyzer).
Technical Paper

Research on Opposed Piston Two-Stroke Engine for Unmanned Aerial Vehicle by Thermodynamic Simulation

2017-10-08
2017-01-2408
The Opposed Piston Two-Stroke (OPTS) engine has many advantages on power density, fuel tolerance, fuel flexibility and package space. A type of self-balanced opposed-piston folded-crank train two-stroke engine for Unmanned Aerial Vehicle (UAV) was studied in this paper. AVL BOOST was used for the thermodynamic simulation. It was a quasi-steady, filling-and-emptying flow analysis -- no intake or exhaust dynamics were simulated. The results were validated against experimental data. The effects of high altitude environment on engine performance have been investigated. Moreover, the matching between the engine and turbocharger was designed and optimized for different altitude levels. The results indicated that, while the altitude is above 6000m, a multi-stage turbocharged engine system need to be considered and optimized for the UAV.
Technical Paper

Research on Control Strategy of Shifting Progress

2008-06-23
2008-01-1684
Based on BF6M1015CP electronic diesel engine (it is a supercharged, water-cooled engine. It has 6 cylinders and it is for heavy-duty vehicle) and HD4070PR electronic automatic transmission (it covers heavy-duty applications requiring high input horsepower and torque. It contains torque converter module, control module, planetary module and output module. It has 7 forward gears and a power-take -off (PTO) and a retarder), the paper analyzes the shift system of an electronic automatic transmission and sets up a mathematic module of the shifting process. With the model the shifting process is analyzed and the model can be used directly in shifting process control, and the rules of shifting process can be derived. To improve the shift quality, in the paper the different control methods in different phases are used and reviewed that Include the open-loop control, fixed ramp rate, and closed-loop control.
Technical Paper

Research of the High Altitude Control Strategy of the Piston Aero-engine Using Two-stage Turbocharger Coupled with single Supercharging System

2019-12-19
2019-01-2211
Aiming at the high altitude operation problems for piston-type aero-engines and to improve the practical ceiling and high altitude dynamic performance, this thesis analyzes a controllable three-stage composite supercharging system, using a two-stage turbocharger coupled supercharger method. The GT-Power simulation model of a four-cylinder boxer engine was established, and the control strategy of variable flight height was obtained. The simulation research of engine performance from 0 to 20,000 meters above sea level has been carried out, which shows that the engine power is at the same level as the plain condition, and it could still maintain 85.28 percent of power even at the height of 20,000 meters, which meets the flight requirements of the aircraft.
Technical Paper

Regulated, Carbonyl Emissions and Particulate Matter from a Dual-Fuel Passenger Car Burning Neat Methanol and Gasoline

2015-04-14
2015-01-1082
As a probable solution to both energy and environmental crisis, methanol and methanol gasoline have been used as gasoline surrogates in several provinces of China. Most recently, the Ministry of Environmental Protection of China is drafting a special emission standard for methanol-fueled light-duty vehicles. Given the scarcity of available data, this paper evaluated regulated emissions, carbonyl compounds and particulate matter from a China-5 certificated gasoline/methanol dual-fuel vehicle over New European Driving Cycle (NEDC). The results elucidated that in context with gasoline mode, CO emitted in methanol mode decreased 11.2%, while no evident changes of THC and NOx emissions were noticed with different fueling regimes. The total carbonyls and formaldehyde have increased by 39.5% and 19.8% respectively after switching from gasoline to methanol. A remarkable decrease of 65.6% in particulate matter was observed in methanol mode.
Technical Paper

On-Line Model Recursive Identification for Variable Parameters of Driveline Vibration

2017-10-08
2017-01-2428
The vehicle driveline suffers low frequency torsional vibration due to the abrupt change of input torque and torque fluctuation under variable frequency. This problem can be solved by model based control, so building a control oriented driveline model is extremely important. In this paper, an on-line recursive identification method is proposed for control oriented model and validated based on an electric car. First of all, the control oriented driveline model is simplified into a six-parameter model with double inertia. Secondly, based on stability analysis, motor torque and motor speed are chosen as input signal for on-line model identification. A recursive identification algorithm is designed and implemented based on Simulink. Meanwhile a detail model of the vehicle which considering driveline parameter variation is built based on ADAMS. Thirdly, on-line identification is conducted by using co-simulation of ADAMS and Simulink.
Technical Paper

Numerical Simulation and Optimization for Combustion of an Opposed Piston Two-Stroke Engine for Unmanned Aerial Vehicle (UAV)

2020-04-14
2020-01-0782
An opposed piston two-stroke engine is more suitable for use in an unmanned aerial vehicle because of its small size, excellent self-balancing, stable operation, and low noise. Consequently, in this study, based on experimental data for a prototype opposed piston two-stroke engine, numerical simulation models were established using GT-POWER for 1D simulation and AVL-FIRE for 3D CFD simulation. The mesh grid and solver parameters for the numerical model of the CFD simulation were determined to guarantee the accuracy of the numerical simulation, before studying and optimizing the ventilation efficiency of the engine with different dip angles. Furthermore, the fuel spray and combustion were analyzed and optimized in details.
Technical Paper

NVH Improvement of Vehicle Powertrain

2012-09-24
2012-01-2007
This paper provides an investigation to improve vehicle powertrain NVH performance via modification of excitation and radiation system of powertrain. First of all, considering different excitation mechanisms of the powertrain, the excitation forces are analyzed. The FEM/BEM coupled analysis and the acoustic transfer vector (ATV) calculation as well as panel contribution analysis are applied to investigating the acoustic characteristics of the powertrain. Then a hybrid approach which couples the transmission gear profile modification for attenuating gear system excitation and the transmission housing modification for reducing transmission housing noise radiation is proposed to improve powertrain NVH performance. Experiment validation is conducted in order to assess the modified results. The assessment shows that this hybrid approach can effectively predict and reduce powertrain noise and vibration.
Technical Paper

Modal Analysis of an Internal Combustion Engine with Finite Element Method based on Contact Calculation

2008-06-23
2008-01-1583
Contact dynamic characteristics of an internal combustion engine structure were studied by the finite element method and experimental verification. Based on theoretical analysis, contact modal calculation of an internal-combustion engine with finite element method is carried out by the ADINA software. Dynamic behavior of the entire engine structure was investigated. Rigid bar connection and coupling connection were introduced for the purpose of comparison with contact analysis and experiment results. The experimental results are in good agreement with the theoretical analysis and FEM results. From the study, it can be demonstrated that dynamic behavior of the engine structure with a large preload shows linear characteristics. Compared with the other models, the procedure presented in this paper is more effective and useful in view of operational time and experience of analysts.
Technical Paper

Life Prediction of Shift Valve for Wet Shift Clutch under Abrasive Wear

2015-04-14
2015-01-0682
In the present paper a degradation assessment and life prediction method has been proposed for electro-hydraulic shift valve applied to control wet shift clutch in Power-shift steering transmission (PSST). Unlike traditional analysis of contaminant sensitivity, our work is motivated by the failure mechanisms of abrasive wear with a mathematic model. Plowing process included in abrasion will consecutively increase the roughness of mating surfaces and thereby enlarge the clearance space for leaking more fluid. It is an overwhelming wear mechanism in the degradation of shift valve within serious-contaminated fluid. Herein a mathematic model for assessment and prediction is proposed by considering particle morphology and abrasion theory. Such model has been verified for its applicability and accuracy through comparison between theoretical and experimental results. Assuming the proposed model to be general, valve wearing behavior in any hydraulic system can be simulated.
Journal Article

Investigation of Trailer Yaw Motion Control Using Active Front Steer and Differential Brake

2011-04-12
2011-01-0985
This paper presents a control system development for a yaw motion control of a vehicle-trailer combination using the integrated control of active front steer (AFS) and differential brake (DB). A 21 degree of freedom (dof) vehicle-trailer combination model that represents a large SUV and a medium one-axle trailer has been developed for this study. A model reference sliding mode controller (MRSMC) has been developed to generate the desired yaw moment. Based on the understanding of advantages and limitations of AFS and DB, a new integrated control algorithm was proposed. The simulation result shows that integrated control of AFS and DB can restrain the trailer's oscillation effectively and shows less longitudinal speed drop and higher stable margin compared to the DB activated only case while maintaining the yaw stability.
Technical Paper

Hollow Shaft Liquid Cooling Method for Performance Improvement of Permanent Magnet Synchronous Motors Used in Electric Vehicles

2023-09-22
2023-01-5067
Operating condition of rotor embedded magnet materials for permanent magnet synchronous motor (PMSM) critically affect electric vehicle (EV) range and dynamic characteristics. The rotor liquid cooling technique has a deep influence on PMSM performance improvement, and begin to be studied and applied increasingly in EV field. Here, the fluid, thermal, and electromagnetic characteristics of motor with and without hollow-shaft cooling are researched comprehensively based on 100 kW PMSM with housing water jacket (HWJ) and hollow-shaft rotor water jacket (SWJ). The solid models are constructed considering temperature-dependent power loss and anisotropic thermal conductivity. After the fluid models are set up by using Reynolds stress model (RSM), conjugate heat transfer is conducted through computational fluid dynamics (CFD) simulation, and is verified by real PMSM test bench experiments.
X