Refine Your Search

Topic

Search Results

Technical Paper

Turning Control and Analysis for a Tracked Vehicle with Electric Transmission System

2004-03-08
2004-01-1592
How to control and analyze the turning process of a tracked vehicle with electric transmission system is an important issue. In the paper two turning control methods are presented according to its study. The balance relations of its tractive effort and power versus radius are obtained by the calculation with using the mathematical model of basic turning dynamics and constraint conditions. The model of continuously variable radius turning is implemented by a RBF neural network which is of the better identifying ability, and the more turning results can be given from it. These turning analyses are significant for the electric transmission system.
Technical Paper

The Application of Solid Selective Catalytic Reduction on Heavy-Duty Diesel Engine

2017-10-08
2017-01-2364
Urea SCR technology is the most promising technique to reduce NOx emissions from heavy duty diesel engines. 32.5wt% aqueous urea solution is widely used as ammonia storage species for the urea SCR process. The thermolysis and hydrolysis of urea produces reducing agent ammonia and reduces NOx emissions to nitrogen and water. However, the application of urea SCR technology has many challenges at low temperature conditions, such as deposits formation in the exhaust pipe, lack deNOx performance at low temperature and freezing below -12°C. For preventing deposits formation, aqueous urea solution is hardly injected into exhaust gas stream at temperature below 200°C. The aqueous urea solution used as reducing agent precursor is the main obstacle for achieving high deNOx performances at low temperature conditions. This paper presents a solid SCR technology for control NOx emissions from heavy duty diesel engines.
Technical Paper

The Application of HSIC in Idle Speed Control of Diesel Engines

1996-02-01
960330
This paper describes the application of Human Simulation Intelligent Control(HSIC) method to improve the idle speed performance of heavy-duty diesel engines on the basis of diesel engine electronic control system. The HSIC is a kind of intelligent control method which can be used without knowing the system's model and it can on line choose control models and it is also easy to be used under the condition of diesel engine electronic control system. In our system, we used electronic control system to control fuel quantity by double loop control of pump rack position and engine speed. From the experimental results, The engine minimum idle speed has been reduced from 800 rpm at first to 500 rpm, and the speed fluctuation have been reduced by 50 percent. From the system's design and test, the simplicity and efficiency of the HSIC control method were demonstrated.
Technical Paper

State Estimation Based on Interacting Multiple Mode Kalman Filter for Vehicle Suspension System

2017-03-28
2017-01-1480
The study of controllable suspension properties special in the characteristics of improving ride comfort and road handling is a challenging task for vehicle industry. Currently, since most suspension control requires the observation of unmeasurable state, how to accurately acquire the state of a suspension system attracts more attention. To solve this problem, a novel approach interacting multiple mode Kalman Filter (IMMKF) is proposed in this paper. Suspension system parameters are crucial for the performance of state observers. Uncertain suspension system parameters in various conditions, e.g. due to additional load, have significant effect on state estimation. Simultaneously, state transition among different models may be happened on the condition of varying system parameters.
Technical Paper

Spray Characteristics of Gasoline-Ethanol Fuel Blends under Flash-Boiling Conditions

2019-04-02
2019-01-0297
The spray structure and vaporization processes of flash-boiling sprays in a constant volume chamber under a wide range of superheated conditions were experimentally investigated by a high speed imaging technique. The Engine Combustion Network’s Spray G injector was used. Four fuels including gasoline, ethanol, and gasoline-ethanol blends E30 and E50 were investigated. Spray penetration length and spray width were correlated to the degree of the superheated degree, which is the ratio of the ambient pressure to saturated vapor pressure (pa/ps). It is found that parameter pa/ps is critical in describing the spray transformation under flash-boiling conditions. Three distinct stages namely the slight flash-boiling, the transition flash-boiling, and the flare flash-boiling are identified to describe the transformation of spray structures.
Technical Paper

Soot and PAH Formation Characteristics of Methanol-Gasoline Belnds in Laminar Coflow Diffusion Flames

2018-04-03
2018-01-0357
Particulate matter emissions are becoming a big issue for GDI engines as the emission regulations being more stringent. Methanol has been considered to be an important alternative fuel to reduce soot emissions. To understand the effect of methanol addition on soot and polycyclic aromatic hydrocarbons (PAHs) formation, the 2-D distributions of soot volume fraction and different size PAHs relative concentrations in methanol/gasoline laminar diffusion flames were measured by TC-LII and PLIF techniques. The effect of methanol was investigated under the conditions of the same carbon flow and the same flame height. The methanol volume fraction was set as M0/20/40/60/80. The results showed that the natural luminescent flame lift-off height and soot lift-off height increases consistently with the increasing methanol content due to the increase of outlet velocity of fuel vapor.
Technical Paper

Simulation Study of Hydraulic Differential Drive Free-piston Engine

2015-04-14
2015-01-1300
The hydraulic free piston engine is a complex mechanical-electro-liquid system, in order to simplify the complex system of the single hydraulic free piston engine, a new method for the driving of hydraulic free piston engine is proposed. Hydraulic differential drive achieves the compression stroke automatically rather than special recovery system. The structure and principle of hydraulic differential drive free-piston engine are analyzed and the mathematical model is established based on the piston force analysis and the hydraulic system working principle. In addition, the control strategy of this novel hydraulic driving engine is also introduced. Finally, the transient results of dynamics are obtained through simulation. Then we compare our results to the ones from the hydraulic free piston engine made by the company Innas.
Technical Paper

Research on the UML-based Modeling of Embedded Software for Diesel Engine Control System

2013-09-08
2013-24-0135
The method and steps for software modeling of the embedded control systems for diesel engine based on UML are described in this paper. In order to meet the software function and the features of the system, object-oriented modeling for diesel engine embedded control software system has been implemented. Requirements are depicted by use case diagram and the logic structure is depicted by class diagram. According to the domain knowledge and the class diagram, the sequence diagram and state diagram are developed to describe the dynamic behavior of the system. The level of software development has been enhanced to the system level by software modeling. It focuses on the automotive field, and can be easy to grasp the problem from the overall perspective and discover software design problems at the early stage. It is also convenient to solve the problems caused by the change of requirements. The model has an excellent flexibility so that it can be applied to different software platforms.
Technical Paper

Research on the Cylinder-by-cylinder Variations Detection and Control Algorithm of Diesel Engine

2015-04-14
2015-01-1644
The cylinder-by-cylinder variations have many bad impacts on the engine performance, such as increasing the engine speed fluctuation, enlarging the torsional vibration and noise. To deal with this problem, the impact mechanism of cylinder-by-cylinder variations on low order torsional vibration has been studied in this paper, and subsequently a new individual cylinder control strategy was designed by processing the instantaneous crankshaft rotation speed signal, detecting the cylinder-by-cylinder variation and using feed-back control. The acceleration characteristics of each cylinder in each engine cycle were compared with each other to extract the variation index. The feed-back control algorithm was based on the regulation of the fuel injection according to the detected variation level.
Technical Paper

Research on Control Strategy of Shifting Progress

2008-06-23
2008-01-1684
Based on BF6M1015CP electronic diesel engine (it is a supercharged, water-cooled engine. It has 6 cylinders and it is for heavy-duty vehicle) and HD4070PR electronic automatic transmission (it covers heavy-duty applications requiring high input horsepower and torque. It contains torque converter module, control module, planetary module and output module. It has 7 forward gears and a power-take -off (PTO) and a retarder), the paper analyzes the shift system of an electronic automatic transmission and sets up a mathematic module of the shifting process. With the model the shifting process is analyzed and the model can be used directly in shifting process control, and the rules of shifting process can be derived. To improve the shift quality, in the paper the different control methods in different phases are used and reviewed that Include the open-loop control, fixed ramp rate, and closed-loop control.
Technical Paper

Regulated, Carbonyl Emissions and Particulate Matter from a Dual-Fuel Passenger Car Burning Neat Methanol and Gasoline

2015-04-14
2015-01-1082
As a probable solution to both energy and environmental crisis, methanol and methanol gasoline have been used as gasoline surrogates in several provinces of China. Most recently, the Ministry of Environmental Protection of China is drafting a special emission standard for methanol-fueled light-duty vehicles. Given the scarcity of available data, this paper evaluated regulated emissions, carbonyl compounds and particulate matter from a China-5 certificated gasoline/methanol dual-fuel vehicle over New European Driving Cycle (NEDC). The results elucidated that in context with gasoline mode, CO emitted in methanol mode decreased 11.2%, while no evident changes of THC and NOx emissions were noticed with different fueling regimes. The total carbonyls and formaldehyde have increased by 39.5% and 19.8% respectively after switching from gasoline to methanol. A remarkable decrease of 65.6% in particulate matter was observed in methanol mode.
Technical Paper

Proceedings of Real Driving Emission (RDE) Measurement in China

2018-04-03
2018-01-0653
Light-duty China-6, which is among the most stringent vehicle exhaust emission standards globally, mandates the monitoring and reporting of real driving emissions (RDE) from July, 2023. In the process of regulation promulgation and verification, more than 300 RDE tests have been performed on over 50 China-5 and China-6 certified models. This technical paper endeavors to summarize the experience of RDE practice in China, and discuss the impacts of some boundary conditions (including vehicle dynamic parameters, data processing methods, hybrid propulsion and testing altitude) on the result of RDE measurement. In general, gasoline passenger cars confront few challenges to meet the upcoming RDE NOx requirement, but some China-5 certified samples, even powered by naturally-aspirated engines may have PN issues. PN emissions from some GDI-hybrid powertrain systems also need further reduction to meet China-6 RDE requirements.
Technical Paper

One-dimensional Simulation Study on the Rule of Several-parameter Matching for the Performance of a Turbocharged Diesel Engine

2008-06-23
2008-01-1696
One-dimensional combustion performance of a turbocharged V-type eight-cylinder diesel engine was computed by used of WAVE code. The parameters of compress ratio, intake temperature, intake pressure, fuel injection quantity, advance angle of injection, fuel injection rate and fuel injection duration were changed so as to study quantificationally how these parameters affect the power, fuel consume, the max combustion pressure, exhaust temperature and emission of the diesel engine. The computational results could help to accomplish the preliminary optimization of several parameters for combustion matching and supplement experimental experience and exploit new products.
Technical Paper

On-Line Model Recursive Identification for Variable Parameters of Driveline Vibration

2017-10-08
2017-01-2428
The vehicle driveline suffers low frequency torsional vibration due to the abrupt change of input torque and torque fluctuation under variable frequency. This problem can be solved by model based control, so building a control oriented driveline model is extremely important. In this paper, an on-line recursive identification method is proposed for control oriented model and validated based on an electric car. First of all, the control oriented driveline model is simplified into a six-parameter model with double inertia. Secondly, based on stability analysis, motor torque and motor speed are chosen as input signal for on-line model identification. A recursive identification algorithm is designed and implemented based on Simulink. Meanwhile a detail model of the vehicle which considering driveline parameter variation is built based on ADAMS. Thirdly, on-line identification is conducted by using co-simulation of ADAMS and Simulink.
Technical Paper

Numerical Simulation of an Opposed-Piston Two-Stroke Diesel Engine

2015-04-14
2015-01-0404
This paper investigates the scavenging process, in-cylinder gas motion in an opposed-piston two-stroke diesel engine and compares the results of in-cylinder gas motion to those of a uniflow-scavenged two stroke conventional engine using computational fluid dynamics engine models. The effect of piston motion profile of OP2S on the scavenging performance was discussed and its optimization was developed. Subsequently, CFD simulation on full load scavenging process was conducted at the same intake pressure and simulation at 2500rpm showed an optimum scavenging performance evaluated by delivery ratio, trapping efficiency and scavenging efficiency. Enhanced axial velocity and average turbulence kinetic energy around minimum volume center were found for OP2S diesel engine compared to the conventional two-stroke diesel engine.
Technical Paper

Numerical Simulation and Optimization for Combustion of an Opposed Piston Two-Stroke Engine for Unmanned Aerial Vehicle (UAV)

2020-04-14
2020-01-0782
An opposed piston two-stroke engine is more suitable for use in an unmanned aerial vehicle because of its small size, excellent self-balancing, stable operation, and low noise. Consequently, in this study, based on experimental data for a prototype opposed piston two-stroke engine, numerical simulation models were established using GT-POWER for 1D simulation and AVL-FIRE for 3D CFD simulation. The mesh grid and solver parameters for the numerical model of the CFD simulation were determined to guarantee the accuracy of the numerical simulation, before studying and optimizing the ventilation efficiency of the engine with different dip angles. Furthermore, the fuel spray and combustion were analyzed and optimized in details.
Technical Paper

Macroscopic and Microscopic Characteristics of Flash Boiling Spray with Binary Fuel Mixtures

2019-04-02
2019-01-0274
Flash boiling has drawn much attention recently for its ability to enhance spray atomization and vaporization, while providing better fuel/air mixing for gasoline direct injection engines. However, the behaviors of flash boiling spray with multi-component fuels have not been fully discovered. In this study, isooctane, ethanol and the mixtures of the two with three blend ratios were chosen as the fuels. Measurements were performed with constant fuel temperature while ambient pressures were varied to adjust the superheated degree. Macroscopic and microscopic characteristics of flash boiling spray were investigated using Diffused Back-Illumination (DBI) imaging and Phase Doppler Anemometry (PDA). Comparisons between flash boiling sprays with single component and binary fuel mixtures were performed to study the effect of fuel properties on spray structure as well as atomization and vaporization processes.
Technical Paper

Investigation on the Deformation of Injector Components and Its Influence on the Injection Process

2020-04-14
2020-01-1398
The deformation of injector components cannot be disregarded as the pressure of the system increases. Deformation directly affects the characteristics of needle movement and injection quantity. In this study, structural deformation of the nozzle, the needle and the control plunger under different pressures is calculated by a simulation model. The value of the deformation of injector components is calculated and the maximum deformation location is also determined. Furthermore, the calculated results indicates that the deformation of the control plunger increases the control chamber volume and the cross-section area between the needle and the needle seat. A MATLAB model is established to The influence of structural deformation on needle movement characteristics and injection quantity is investigate by a numerical model. The results show that the characteristic points of needle movement are delayed and injection quantity increases due to the deformation.
Journal Article

Investigation of Trailer Yaw Motion Control Using Active Front Steer and Differential Brake

2011-04-12
2011-01-0985
This paper presents a control system development for a yaw motion control of a vehicle-trailer combination using the integrated control of active front steer (AFS) and differential brake (DB). A 21 degree of freedom (dof) vehicle-trailer combination model that represents a large SUV and a medium one-axle trailer has been developed for this study. A model reference sliding mode controller (MRSMC) has been developed to generate the desired yaw moment. Based on the understanding of advantages and limitations of AFS and DB, a new integrated control algorithm was proposed. The simulation result shows that integrated control of AFS and DB can restrain the trailer's oscillation effectively and shows less longitudinal speed drop and higher stable margin compared to the DB activated only case while maintaining the yaw stability.
X