Refine Your Search

Topic

Search Results

Technical Paper

Turning Control and Analysis for a Tracked Vehicle with Electric Transmission System

2004-03-08
2004-01-1592
How to control and analyze the turning process of a tracked vehicle with electric transmission system is an important issue. In the paper two turning control methods are presented according to its study. The balance relations of its tractive effort and power versus radius are obtained by the calculation with using the mathematical model of basic turning dynamics and constraint conditions. The model of continuously variable radius turning is implemented by a RBF neural network which is of the better identifying ability, and the more turning results can be given from it. These turning analyses are significant for the electric transmission system.
Technical Paper

Study on the Interaction of Clearance Flow and Shock Wave in a Turbine Nozzle

2017-03-28
2017-01-1039
Radial flow Variable Nozzle Turbine (VNT) enables better matching between the turbocharger and engine. At partial loading or low-end engine operating points, the nozzle vane opening of the VNT is decreased to achieve higher turbine efficiency and transient response, which is a benefit for engine fuel consumption and emission. However, under certain small nozzle opening conditions (such as nozzle brake and low-end operating points), strong shock waves and strong nozzle clearance flow are generated. Consequently, strong rotor-stator interaction between turbine nozzle and impeller is the key factor of the impeller high cycle fatigue and failure. In present paper, flow visualization experiment is carried out on a linear turbine nozzle. The turbine nozzle is designed to have single-sided clearance, and the Schlieren visualization method is used to describe the formation and development process of clearance flow and shock wave under different clearance and expansion ratio configurations.
Technical Paper

Study on Pressure Fluctuation of a Constant Pressure Fuel System

2017-03-28
2017-01-0828
The pressure fluctuation characteristics of a constant pressure fuel system has great influence on its fuel injection characteristics. It is, therefore important to understand the impacts of these fluctuations in order to better study and optimize the fuel injection characteristics. In this study, the pressure fluctuation characteristics of the high pressure common rail system have been investigated experimentally. The transient pressure at different positions in the high pressure common rail system have been measured. The phase of pressure fluctuation during the injection process has been analyzed and the corresponding fluctuating characteristic parameters have been characterized for each phase. The changes in pressure wave propagation velocity, fuel injection pressure drop amplitude, wave amplitude, period and decay time are obtained by studying the fluctuation characteristic parameters caused by fuel pressure and temperature change.
Technical Paper

Spray Characteristics of Gasoline-Ethanol Fuel Blends under Flash-Boiling Conditions

2019-04-02
2019-01-0297
The spray structure and vaporization processes of flash-boiling sprays in a constant volume chamber under a wide range of superheated conditions were experimentally investigated by a high speed imaging technique. The Engine Combustion Network’s Spray G injector was used. Four fuels including gasoline, ethanol, and gasoline-ethanol blends E30 and E50 were investigated. Spray penetration length and spray width were correlated to the degree of the superheated degree, which is the ratio of the ambient pressure to saturated vapor pressure (pa/ps). It is found that parameter pa/ps is critical in describing the spray transformation under flash-boiling conditions. Three distinct stages namely the slight flash-boiling, the transition flash-boiling, and the flare flash-boiling are identified to describe the transformation of spray structures.
Technical Paper

Soot and PAH Formation Characteristics of Methanol-Gasoline Belnds in Laminar Coflow Diffusion Flames

2018-04-03
2018-01-0357
Particulate matter emissions are becoming a big issue for GDI engines as the emission regulations being more stringent. Methanol has been considered to be an important alternative fuel to reduce soot emissions. To understand the effect of methanol addition on soot and polycyclic aromatic hydrocarbons (PAHs) formation, the 2-D distributions of soot volume fraction and different size PAHs relative concentrations in methanol/gasoline laminar diffusion flames were measured by TC-LII and PLIF techniques. The effect of methanol was investigated under the conditions of the same carbon flow and the same flame height. The methanol volume fraction was set as M0/20/40/60/80. The results showed that the natural luminescent flame lift-off height and soot lift-off height increases consistently with the increasing methanol content due to the increase of outlet velocity of fuel vapor.
Technical Paper

Research on the Cylinder-by-cylinder Variations Detection and Control Algorithm of Diesel Engine

2015-04-14
2015-01-1644
The cylinder-by-cylinder variations have many bad impacts on the engine performance, such as increasing the engine speed fluctuation, enlarging the torsional vibration and noise. To deal with this problem, the impact mechanism of cylinder-by-cylinder variations on low order torsional vibration has been studied in this paper, and subsequently a new individual cylinder control strategy was designed by processing the instantaneous crankshaft rotation speed signal, detecting the cylinder-by-cylinder variation and using feed-back control. The acceleration characteristics of each cylinder in each engine cycle were compared with each other to extract the variation index. The feed-back control algorithm was based on the regulation of the fuel injection according to the detected variation level.
Technical Paper

Research on Temperature Stability of an Independent Energy Supply Device with Organic Rankine Cycles Based on Hydraulic Retarder

2017-09-22
2017-01-7003
Hydraulic retarder, as an auxiliary braking device, is widely used in commercial vehicles. Nowadays, the hydraulic retarder’s internal oil is mainly cooled by the coolant circuit directly. It not only aggravates the load of engine cooling system, but also makes the abundant heat energy not be recycled properly. In this study, an independent energy supply device with organic Rankine cycles is applied to solve the problems above. In the structure of this energy supply device, the evaporator’s inlet and outlet is connected in parallel with the oil outlet and inlet of the retarder respectively. A part of oil enters the evaporator to transfer heat with the organic fluid, and the rest of oil enters the oil-water heat exchanger to be cooled by the coolant circuit. According to the different braking conditions of the retarder, the oil temperature in the inlet of the hydraulic retarder can be kept within the proper range through adjusting the oil flow rate into the evaporator properly.
Technical Paper

Research on Regenerative Braking Control Strategy under High Charge State Using Prescribed Performance Prediction Control

2022-10-28
2022-01-7041
To reduce the energy consumption level of electric vehicles, the working range of the regenerative braking system will gradually expand to the high state of charge of the battery. The time delay in the control signal transmission path of the high state of charge regenerative braking control process will affect the regenerative braking. At the same time, regenerative braking under a high state of charge puts forward higher requirements for the control accuracy of regenerative current. In the research of this paper, the motor model, battery model, and vehicle dynamics model are firstly established by using MATLAB/Simulink, and the dynamic relationship between regenerative current and regenerative braking torque is analyzed at the same time. Considering the system time delay, this paper proposes a high-charge regenerative braking control strategy (SPPC) that combines Smith prediction and prescribed performance control.
Technical Paper

Research on Performance of Pulsed Twin-Fluid Injector and Its Application on a Spark Ignition UAV Engine

2021-04-06
2021-01-0651
The principal objective of the present work is to investigate the fundamental characteristics of a commercially available outwardly opening twin-fluid injector, which utilizes air-assisted atomization principle to attain pulse-type injection of fuel-air mixture. The electromagnetic characteristics of this injector were simulated and the effects of dominating parameters on the electromagnetic force to drive injector were ascertained. On that basis, this paper elaborates on the fundamental characteristics of air-assisted spray using gasoline and kerosene with the employment of two types of optical testing techniques. The spray morphological evolution under varied fuel injection durations and ambient pressures were captured with high-speed shadowgraph thus the corresponding external macroscopic characteristics were obtained and further compared. Spray droplet velocity and diameter at fixed monitoring location were measured by using PDPA (Phase Doppler Particle Analyzer).
Technical Paper

Regulated, Carbonyl Emissions and Particulate Matter from a Dual-Fuel Passenger Car Burning Neat Methanol and Gasoline

2015-04-14
2015-01-1082
As a probable solution to both energy and environmental crisis, methanol and methanol gasoline have been used as gasoline surrogates in several provinces of China. Most recently, the Ministry of Environmental Protection of China is drafting a special emission standard for methanol-fueled light-duty vehicles. Given the scarcity of available data, this paper evaluated regulated emissions, carbonyl compounds and particulate matter from a China-5 certificated gasoline/methanol dual-fuel vehicle over New European Driving Cycle (NEDC). The results elucidated that in context with gasoline mode, CO emitted in methanol mode decreased 11.2%, while no evident changes of THC and NOx emissions were noticed with different fueling regimes. The total carbonyls and formaldehyde have increased by 39.5% and 19.8% respectively after switching from gasoline to methanol. A remarkable decrease of 65.6% in particulate matter was observed in methanol mode.
Technical Paper

Regulated and Unregulated Emissions from a Spark Ignition Engine Fueled with Acetone-Butanol-Ethanol (ABE)-Gasoline Blends

2017-10-08
2017-01-2328
Bio-butanol has been widely investigated as a promising alternative fuel. However, the main issues preventing the industrial-scale production of butanol is its relatively low production efficiency and high cost of production. Acetone-butanol-ethanol (ABE), the intermediate product in the ABE fermentation process for producing bio-butanol, has attracted a lot of interest as an alternative fuel because it not only preserves the advantages of oxygenated fuels, but also lowers the cost of fuel recovery for individual component during fermentation. If ABE could be directly used for clean combustion, the separation costs would be eliminated which save an enormous amount of time and money in the production chain of bio-butanol.
Technical Paper

Proceedings of Real Driving Emission (RDE) Measurement in China

2018-04-03
2018-01-0653
Light-duty China-6, which is among the most stringent vehicle exhaust emission standards globally, mandates the monitoring and reporting of real driving emissions (RDE) from July, 2023. In the process of regulation promulgation and verification, more than 300 RDE tests have been performed on over 50 China-5 and China-6 certified models. This technical paper endeavors to summarize the experience of RDE practice in China, and discuss the impacts of some boundary conditions (including vehicle dynamic parameters, data processing methods, hybrid propulsion and testing altitude) on the result of RDE measurement. In general, gasoline passenger cars confront few challenges to meet the upcoming RDE NOx requirement, but some China-5 certified samples, even powered by naturally-aspirated engines may have PN issues. PN emissions from some GDI-hybrid powertrain systems also need further reduction to meet China-6 RDE requirements.
Technical Paper

One-dimensional Simulation Study on the Rule of Several-parameter Matching for the Performance of a Turbocharged Diesel Engine

2008-06-23
2008-01-1696
One-dimensional combustion performance of a turbocharged V-type eight-cylinder diesel engine was computed by used of WAVE code. The parameters of compress ratio, intake temperature, intake pressure, fuel injection quantity, advance angle of injection, fuel injection rate and fuel injection duration were changed so as to study quantificationally how these parameters affect the power, fuel consume, the max combustion pressure, exhaust temperature and emission of the diesel engine. The computational results could help to accomplish the preliminary optimization of several parameters for combustion matching and supplement experimental experience and exploit new products.
Technical Paper

Numerical Simulation and Optimization for Combustion of an Opposed Piston Two-Stroke Engine for Unmanned Aerial Vehicle (UAV)

2020-04-14
2020-01-0782
An opposed piston two-stroke engine is more suitable for use in an unmanned aerial vehicle because of its small size, excellent self-balancing, stable operation, and low noise. Consequently, in this study, based on experimental data for a prototype opposed piston two-stroke engine, numerical simulation models were established using GT-POWER for 1D simulation and AVL-FIRE for 3D CFD simulation. The mesh grid and solver parameters for the numerical model of the CFD simulation were determined to guarantee the accuracy of the numerical simulation, before studying and optimizing the ventilation efficiency of the engine with different dip angles. Furthermore, the fuel spray and combustion were analyzed and optimized in details.
Technical Paper

Modeling and Simulation of a Dual Fuel (Diesel/Natural Gas) Engine With Multidimensional CFD

2003-03-03
2003-01-0755
A dual fuel engine simulation model was formulated and the combustion process of a diesel/natural gas dual fuel engine was studied using an updated KIVA-3V Computational Fluid Dynamic (CFD) code. The dual fuel engine ignition and combustion process is complicated since it includes diesel injection, atomization and ignition, superimposed with premixed natural gas combustion. However, understanding of the combustion process is critical for engine performance optimization. Starting from a previously validated Characteristic-Timescale diesel combustion model, a natural gas combustion model was implemented and added to simulate the ignition and combustion process in a dual fuel bus engine. Available engine test data were used for validation of both the diesel-only and the premixed spark-ignition operation regimes. A new formulation of the Characteristic-Timescale combustion model was then introduced to allow smooth transition between the combustion regimes.
Technical Paper

Macroscopic and Microscopic Characteristics of Flash Boiling Spray with Binary Fuel Mixtures

2019-04-02
2019-01-0274
Flash boiling has drawn much attention recently for its ability to enhance spray atomization and vaporization, while providing better fuel/air mixing for gasoline direct injection engines. However, the behaviors of flash boiling spray with multi-component fuels have not been fully discovered. In this study, isooctane, ethanol and the mixtures of the two with three blend ratios were chosen as the fuels. Measurements were performed with constant fuel temperature while ambient pressures were varied to adjust the superheated degree. Macroscopic and microscopic characteristics of flash boiling spray were investigated using Diffused Back-Illumination (DBI) imaging and Phase Doppler Anemometry (PDA). Comparisons between flash boiling sprays with single component and binary fuel mixtures were performed to study the effect of fuel properties on spray structure as well as atomization and vaporization processes.
Technical Paper

Life Prediction of Shift Valve for Wet Shift Clutch under Abrasive Wear

2015-04-14
2015-01-0682
In the present paper a degradation assessment and life prediction method has been proposed for electro-hydraulic shift valve applied to control wet shift clutch in Power-shift steering transmission (PSST). Unlike traditional analysis of contaminant sensitivity, our work is motivated by the failure mechanisms of abrasive wear with a mathematic model. Plowing process included in abrasion will consecutively increase the roughness of mating surfaces and thereby enlarge the clearance space for leaking more fluid. It is an overwhelming wear mechanism in the degradation of shift valve within serious-contaminated fluid. Herein a mathematic model for assessment and prediction is proposed by considering particle morphology and abrasion theory. Such model has been verified for its applicability and accuracy through comparison between theoretical and experimental results. Assuming the proposed model to be general, valve wearing behavior in any hydraulic system can be simulated.
Technical Paper

Investigation on the Deformation of Injector Components and Its Influence on the Injection Process

2020-04-14
2020-01-1398
The deformation of injector components cannot be disregarded as the pressure of the system increases. Deformation directly affects the characteristics of needle movement and injection quantity. In this study, structural deformation of the nozzle, the needle and the control plunger under different pressures is calculated by a simulation model. The value of the deformation of injector components is calculated and the maximum deformation location is also determined. Furthermore, the calculated results indicates that the deformation of the control plunger increases the control chamber volume and the cross-section area between the needle and the needle seat. A MATLAB model is established to The influence of structural deformation on needle movement characteristics and injection quantity is investigate by a numerical model. The results show that the characteristic points of needle movement are delayed and injection quantity increases due to the deformation.
Technical Paper

Fault Detection and Diagnosis of Diesel Engine Lubrication System Performance Degradation Faults based on PSO-SVM

2017-10-08
2017-01-2430
Considering the randomness and instability of the oil pressure in the lubrication system, a new approach for fault detection and diagnosis of diesel engine lubrication system based on support vector machine optimized by particle swarm optimization (PSO-SVM) model and centroid location algorithm has been proposed. Firstly, PSO algorithm is chosen to determine the optimum parameters of SVM, to avoid the blindness of choosing parameters. It can improve the prediction accuracy of the model. The results show that the classify accuracy of PSO-SVM is improved compared with SVM in which parameters are set according to experience. Then, the support vector machine classification interface is fitted to a curve, and the boundary conditions of fault diagnosis are obtained. Finally, diagnose algorithm is achieved through analyzing the centroid movement of features. According to Performance degradation data, degenerate trajectory model is established based on centroid location.
Technical Paper

Experimental Study on the Effects of Intake Parameters on Diesel LTC Combustion and Emission

2017-10-08
2017-01-2259
The diesel low temperature combustion (LTC) can keep high efficiency and produce low emission. Which has been widely studied at home and abroad in recent years. The combustion control parameters, such as injection pressure, injection timing, intake oxygen concentration, intake pressure, intake temperature and so on, have an important influence on the combustion and emission of diesel LTC. Therefore, to realize different combustion modes and combustion mode switch of diesel engine, it is necessary to accurately control the injection parameters and intake parameters of diesel engine. In this work, experimental study has been carried out to analyze the effect of intake oxygen concentration, intake pressure and intake temperature in combustion and emission characteristics of diesel LTC, such as in-cylinder pressure, temperature, heat release rate, NOx and soot emission.
X