Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Understanding Catalyst Overheating Protection (COP) as a Source of Post-TWC Ammonia Emissions from Petrol Vehicle

2022-08-30
2022-01-1032
TWC exposure to extreme temperature could result in irreversible damage or thermal failure. Thus, a strategy embedded in the engine control unit (ECU) called catalyst overheating protection (COP) will be activated to prevent TWC overheating. When COP is activated, the command air-fuel ratio will be enriched to cool the catalyst monolith down. Fuel enrichment has been proven a main prerequisite for ammonia formation in hot TWCs as a by-product of NOx reduction. Hence, COP events could theoretically be a source of post-catalyst ammonia from petrol vehicles, but this theory is yet to be confirmed in published literature. This paper validated this hypothesis using a self-programmed chassis-level test. The speed of the test vehicle was set to constant while the TWC temperature was raised stepwise until a COP event was activated.
Technical Paper

Two-Photon Laser-Induced Fluorescence of Nitric Oxide in a Diesel Engine

2006-04-03
2006-01-1201
In-cylinder concentrations of nitric oxide (NO) in a diesel engine were studied using a laser-induced fluorescence (LIF) technique that employs two-photon excitation. Two-photon NO LIF images were acquired during the expansion and exhaust portions of the engine cycle providing useful NO fluorescence signal levels from 60° after top dead center through the end of the exhaust stroke. The engine was fueled with the oxygenated compound diethylene glycol diethyl ether to minimize soot within the combustion chamber. Results of the two-photon NO LIF technique from the exhaust portion of the cycle were compared with chemiluminescence NO exhaust-gas measurements over a range of engine loads from 1.4 to 16 bar gross indicated mean effective pressure. The overall trend of the two-photon NO LIF signal showed good qualitative agreement with the NO exhaust-gas measurements.
Technical Paper

Three-Dimensional CFD Analysis of Semi-Direct Injection Hydraulic Free Piston Engine

2016-04-05
2016-01-1018
In this paper, a new method for the driving of the hydraulic free piston engine (HFPE) is proposed. Hydraulic differential drive achieves the compression stroke automatically rather than special recovery system, which has a great influence on the engine dynamic performance. The purpose of this paper is to solve the key operation and control problems for HFPE to commix fuel with air. HFPE adopts two-stroke loop-scavenging and semi-direct injection. The semi-direct injection nozzle is located in the liner wall inside the main intake port, with the axes oriented towards the piston at the Bottom Dead Center (BDC). Different scavenging pressures and injection angles result in different impacts on the mixture of fuel and air in the cylinder. This study analyzes the changes of the combustion heat release rate by simulation.
Technical Paper

The Application of Solid Selective Catalytic Reduction on Heavy-Duty Diesel Engine

2017-10-08
2017-01-2364
Urea SCR technology is the most promising technique to reduce NOx emissions from heavy duty diesel engines. 32.5wt% aqueous urea solution is widely used as ammonia storage species for the urea SCR process. The thermolysis and hydrolysis of urea produces reducing agent ammonia and reduces NOx emissions to nitrogen and water. However, the application of urea SCR technology has many challenges at low temperature conditions, such as deposits formation in the exhaust pipe, lack deNOx performance at low temperature and freezing below -12°C. For preventing deposits formation, aqueous urea solution is hardly injected into exhaust gas stream at temperature below 200°C. The aqueous urea solution used as reducing agent precursor is the main obstacle for achieving high deNOx performances at low temperature conditions. This paper presents a solid SCR technology for control NOx emissions from heavy duty diesel engines.
Technical Paper

The Application of HSIC in Idle Speed Control of Diesel Engines

1996-02-01
960330
This paper describes the application of Human Simulation Intelligent Control(HSIC) method to improve the idle speed performance of heavy-duty diesel engines on the basis of diesel engine electronic control system. The HSIC is a kind of intelligent control method which can be used without knowing the system's model and it can on line choose control models and it is also easy to be used under the condition of diesel engine electronic control system. In our system, we used electronic control system to control fuel quantity by double loop control of pump rack position and engine speed. From the experimental results, The engine minimum idle speed has been reduced from 800 rpm at first to 500 rpm, and the speed fluctuation have been reduced by 50 percent. From the system's design and test, the simplicity and efficiency of the HSIC control method were demonstrated.
Technical Paper

Study of Biodiesel Combustion in a Constant Volume Chamber with Different Ambient Temperature and Oxygen Concentration

2011-08-30
2011-01-1931
Biodiesel is a widely used biofuel in diesel engines, which is of particular interest as a renewable fuel because it possesses the similar properties as the diesel fuel. The pure soybean biodiesel was tested in an optical constant volume combustion chamber using natural flame luminosity and forward illumination light extinction (FILE) methods to explore the combustion process and soot distribution at various ambient temperatures (800 K and 1000 K) and oxygen concentrations (21%, 16%, 10.5%). Results indicated that, with a lower ambient temperature, the autoignition delay became longer for all three oxygen concentrations and more ambient air was entrained by spray jet and more fuel was burnt by premixed combustion. With less ambient oxygen concentration, the heat release rate showed not only a longer ignition delay but also longer combustion duration.
Technical Paper

Spray and Combustion Visualization in an Optical HSDI Diesel Engine Operated in Low-Temperature Combustion Mode with Bio-diesel and Diesel Fuels

2008-04-14
2008-01-1390
An optically accessible single-cylinder high-speed direct-injection (HSDI) Diesel engine equipped with a Bosch common rail injection system was used to study the spray and combustion processes for European low sulfur diesel, bio-diesel, and their blends at different blending ratio. Influences of injection timing and fuel type on liquid fuel evolution and combustion characteristics were investigated under similar loads. The in-cylinder pressure was measured and the heat release rate was calculated. High-speed Mie-scattering technique was employed to visualize the liquid distribution and evolution. High-speed combustion video was also captured for all the studied cases using the same frame rate. NOx emissions were measured in the exhaust pipe. The experimental results indicated that for all of the conditions the heat release rate was dominated by a premixed combustion pattern and the heat release rate peak became smaller with injection timing retardation for all test fuels.
Technical Paper

Spray Characteristics of Gasoline-Ethanol Fuel Blends under Flash-Boiling Conditions

2019-04-02
2019-01-0297
The spray structure and vaporization processes of flash-boiling sprays in a constant volume chamber under a wide range of superheated conditions were experimentally investigated by a high speed imaging technique. The Engine Combustion Network’s Spray G injector was used. Four fuels including gasoline, ethanol, and gasoline-ethanol blends E30 and E50 were investigated. Spray penetration length and spray width were correlated to the degree of the superheated degree, which is the ratio of the ambient pressure to saturated vapor pressure (pa/ps). It is found that parameter pa/ps is critical in describing the spray transformation under flash-boiling conditions. Three distinct stages namely the slight flash-boiling, the transition flash-boiling, and the flare flash-boiling are identified to describe the transformation of spray structures.
Technical Paper

Sound Evaluation of Flow-Induced Noise with Simultaneous Measurement of Flow Regimes at TXV Inlet of Automotive Evaporators

2020-04-14
2020-01-1255
In the air conditioning system, flow-induced noise is very disturbing, including the noise generated in the expansion device and the heat exchangers. In the past few decades, most researches related to flow-induced noise focused on the relationship between the flow regimes near the expansion device and the amplitude of flow-induced noise when the measurements are not synched. In this paper, an experimental approach is used to explore the simultaneous relationships between flow-induced noise characteristics and flow regimes at the inlet of TXV of evaporators used in automobiles. A pumped R134a loop with microphones and transparent visualization sections is used to simulate the vapor compression system. Also, the paper evaluates the severity of flow-induced noise from not only the amplitude of noise but also the frequency of noise with a parameter called psychoacoustic annoyance (PA).
Technical Paper

Soot and PAH Formation Characteristics of Methanol-Gasoline Belnds in Laminar Coflow Diffusion Flames

2018-04-03
2018-01-0357
Particulate matter emissions are becoming a big issue for GDI engines as the emission regulations being more stringent. Methanol has been considered to be an important alternative fuel to reduce soot emissions. To understand the effect of methanol addition on soot and polycyclic aromatic hydrocarbons (PAHs) formation, the 2-D distributions of soot volume fraction and different size PAHs relative concentrations in methanol/gasoline laminar diffusion flames were measured by TC-LII and PLIF techniques. The effect of methanol was investigated under the conditions of the same carbon flow and the same flame height. The methanol volume fraction was set as M0/20/40/60/80. The results showed that the natural luminescent flame lift-off height and soot lift-off height increases consistently with the increasing methanol content due to the increase of outlet velocity of fuel vapor.
Technical Paper

Smokeless Combustion within a Small-Bore HSDI Diesel Engine Using a Narrow Angle Injector

2007-04-16
2007-01-0203
Combustion processes employing different injection strategies in a High-Speed Direct Inject (HSDI) diesel engine were investigated using a narrow angle injector (70 degree). Whole-cycle combustion was visualized using a high-speed digital video camera. The liquid spray evolution process was imaged by the Mie-scattering technique. Different injection strategies were employed in this study including early pre-Top Dead Center (TDC) injection, post-TDC injection, multiple injection strategies with an early pre-TDC injection and a late post-TDC injection. Smokeless combustion was obtained under some operating conditions. Compared with the original injection angle (150 degree), some new combustion phenomena were observed for certain injection strategies. For early pre-TDC injection strategies, liquid fuel impingement is observed that results in some newly observed fuel film combustion flame (pool fires) following an HCCI-like weak flame.
Technical Paper

Simulation Study of Hydraulic Differential Drive Free-piston Engine

2015-04-14
2015-01-1300
The hydraulic free piston engine is a complex mechanical-electro-liquid system, in order to simplify the complex system of the single hydraulic free piston engine, a new method for the driving of hydraulic free piston engine is proposed. Hydraulic differential drive achieves the compression stroke automatically rather than special recovery system. The structure and principle of hydraulic differential drive free-piston engine are analyzed and the mathematical model is established based on the piston force analysis and the hydraulic system working principle. In addition, the control strategy of this novel hydraulic driving engine is also introduced. Finally, the transient results of dynamics are obtained through simulation. Then we compare our results to the ones from the hydraulic free piston engine made by the company Innas.
Technical Paper

Scheme Design and Performance Simulation of Opposed-Piston Two-Stroke Gasoline Direct Injection Engine

2015-04-14
2015-01-1276
In this paper, a new-type balanced opposed-piston two-stroke (OP2S) gasoline direct injection (GDI) engine is developed by Beijing Institute of Technology. OP2S-GDI engine has some potential advantages such as simple structure, good balance, compact, high power density and thermal efficiency. The structural feature of OP2S-GDI engine leads to the performance difference compared with conventional engines. In order to study and verify the characteristics of this kind of engine, the dynamics characteristics and design scheme of opposed crank-connecting rod mechanism, in-cylinder scavenging process, mixture formation and combustion process are investigated. The influence of parameters on engine performance is investigated, including opposed-piston motion phase difference, intake and exhaust port timing, injection and ignition timing.
Technical Paper

Research on the UML-based Modeling of Embedded Software for Diesel Engine Control System

2013-09-08
2013-24-0135
The method and steps for software modeling of the embedded control systems for diesel engine based on UML are described in this paper. In order to meet the software function and the features of the system, object-oriented modeling for diesel engine embedded control software system has been implemented. Requirements are depicted by use case diagram and the logic structure is depicted by class diagram. According to the domain knowledge and the class diagram, the sequence diagram and state diagram are developed to describe the dynamic behavior of the system. The level of software development has been enhanced to the system level by software modeling. It focuses on the automotive field, and can be easy to grasp the problem from the overall perspective and discover software design problems at the early stage. It is also convenient to solve the problems caused by the change of requirements. The model has an excellent flexibility so that it can be applied to different software platforms.
Technical Paper

Research on Performance of Pulsed Twin-Fluid Injector and Its Application on a Spark Ignition UAV Engine

2021-04-06
2021-01-0651
The principal objective of the present work is to investigate the fundamental characteristics of a commercially available outwardly opening twin-fluid injector, which utilizes air-assisted atomization principle to attain pulse-type injection of fuel-air mixture. The electromagnetic characteristics of this injector were simulated and the effects of dominating parameters on the electromagnetic force to drive injector were ascertained. On that basis, this paper elaborates on the fundamental characteristics of air-assisted spray using gasoline and kerosene with the employment of two types of optical testing techniques. The spray morphological evolution under varied fuel injection durations and ambient pressures were captured with high-speed shadowgraph thus the corresponding external macroscopic characteristics were obtained and further compared. Spray droplet velocity and diameter at fixed monitoring location were measured by using PDPA (Phase Doppler Particle Analyzer).
Technical Paper

Research on Opposed Piston Two-Stroke Engine for Unmanned Aerial Vehicle by Thermodynamic Simulation

2017-10-08
2017-01-2408
The Opposed Piston Two-Stroke (OPTS) engine has many advantages on power density, fuel tolerance, fuel flexibility and package space. A type of self-balanced opposed-piston folded-crank train two-stroke engine for Unmanned Aerial Vehicle (UAV) was studied in this paper. AVL BOOST was used for the thermodynamic simulation. It was a quasi-steady, filling-and-emptying flow analysis -- no intake or exhaust dynamics were simulated. The results were validated against experimental data. The effects of high altitude environment on engine performance have been investigated. Moreover, the matching between the engine and turbocharger was designed and optimized for different altitude levels. The results indicated that, while the altitude is above 6000m, a multi-stage turbocharged engine system need to be considered and optimized for the UAV.
Technical Paper

Research on Control Strategy of Shifting Progress

2008-06-23
2008-01-1684
Based on BF6M1015CP electronic diesel engine (it is a supercharged, water-cooled engine. It has 6 cylinders and it is for heavy-duty vehicle) and HD4070PR electronic automatic transmission (it covers heavy-duty applications requiring high input horsepower and torque. It contains torque converter module, control module, planetary module and output module. It has 7 forward gears and a power-take -off (PTO) and a retarder), the paper analyzes the shift system of an electronic automatic transmission and sets up a mathematic module of the shifting process. With the model the shifting process is analyzed and the model can be used directly in shifting process control, and the rules of shifting process can be derived. To improve the shift quality, in the paper the different control methods in different phases are used and reviewed that Include the open-loop control, fixed ramp rate, and closed-loop control.
Technical Paper

Research of the High Altitude Control Strategy of the Piston Aero-engine Using Two-stage Turbocharger Coupled with single Supercharging System

2019-12-19
2019-01-2211
Aiming at the high altitude operation problems for piston-type aero-engines and to improve the practical ceiling and high altitude dynamic performance, this thesis analyzes a controllable three-stage composite supercharging system, using a two-stage turbocharger coupled supercharger method. The GT-Power simulation model of a four-cylinder boxer engine was established, and the control strategy of variable flight height was obtained. The simulation research of engine performance from 0 to 20,000 meters above sea level has been carried out, which shows that the engine power is at the same level as the plain condition, and it could still maintain 85.28 percent of power even at the height of 20,000 meters, which meets the flight requirements of the aircraft.
Technical Paper

Regulated and Unregulated Emissions from a Spark Ignition Engine Fueled with Acetone-Butanol-Ethanol (ABE)-Gasoline Blends

2017-10-08
2017-01-2328
Bio-butanol has been widely investigated as a promising alternative fuel. However, the main issues preventing the industrial-scale production of butanol is its relatively low production efficiency and high cost of production. Acetone-butanol-ethanol (ABE), the intermediate product in the ABE fermentation process for producing bio-butanol, has attracted a lot of interest as an alternative fuel because it not only preserves the advantages of oxygenated fuels, but also lowers the cost of fuel recovery for individual component during fermentation. If ABE could be directly used for clean combustion, the separation costs would be eliminated which save an enormous amount of time and money in the production chain of bio-butanol.
X