Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

The Effect of Occupant Size on Head Displacement in Frontal Collisions

2007-04-16
2007-01-1503
This paper builds on previous research on the development of a head displacement model for restrained occupants in frontal collisions. Physical and mathematical simulations were performed utilizing the 5th percentile female and 50th percentile male Hybrid III dummies to measure the effect of occupant size, seat belt system design and crash severity on resultant head displacement of occupants in frontal collisions. Sled and simulation accelerations ranged from 10 g to 20 g with delta-V's from 6.6 m/s to 10.0 m/s. Results indicate a difference between the 5th percentile female and 50th percentile male dummies. Preliminary assessment of head displacement as a function of occupant kinetic energy demonstrated good correlation.
Technical Paper

Sled Test Evaluation of Racecar Head/Neck Restraints Revisited

2004-11-30
2004-01-3516
At the 2002 MSEC, we presented a paper on the sled test evaluation of racecar head/neck restraint performance (Melvin, et al. 2002). Some individuals objected to the 3 msec clip filtering procedures used to eliminate artifactual spikes in the neck tension data for the HANS® device. As a result, we are presenting the same test data with the spikes left in the neck force data to reassure those individuals that these spikes did not significantly affect the results and conclusions of our original paper. In addition we will add new insights into understanding head/neck restraint performance gained during two more years of testing such systems. This paper re-evaluates the performance of three commercially available head/neck restraint systems using a stock car seating configuration and a realistic stock car crash pulse. The tests were conducted at an impact angle of 30 degrees to the right, with a midsize male Hybrid III anthropomorphic test device (ATD) modified for racecar crash testing.
Technical Paper

Sled Test Evaluation of Racecar Head/Neck Restraints

2002-12-02
2002-01-3304
Recent action by some racecar sanctioning bodies making head/neck restraint use mandatory for competitors has resulted in a number of methods attempting to provide head/neck restraint. This paper evaluates the performance of a number of commercially available head/neck restraint systems using a stock car seating configuration and a realistic stock car crash pulse. The tests were conducted at an impact angle of 30 degrees to the right, with a midsize male Hybrid III anthropomorphic test device (ATD) modified for racecar crash testing. A six-point latch and link racing harness restrained the ATD. The goal of the tests was to examine the performance of the head/neck restraint without the influence of the seat or steering wheel. Three head/neck restraint systems were tested using a sled pulse with a 35 mph (56 km/h) velocity change and 50G peak deceleration. Three tests with three samples of each system were performed to assess repeatability.
Technical Paper

Investigation of Upper Body and Cervical Spine Kinematics of Post Mortem Human Subjects (PMHS) during Low-Speed, Rear-End Impacts

2009-04-20
2009-01-0387
A total of eight low-speed, rear-end impact tests using two Post Mortem Human Subjects (PMHS) in a seated posture are reported. These tests were conducted using a HYGE-style mini-sled. Two test conditions were employed: 8 kph without a headrestraint or 16 kph with a headrestraint. Upper-body kinematics were captured for each test using a combination of transducers and high-speed video. A 3-2-2-2-accelerometer package was used to measure the generalized 3D kinematics of both the head and pelvis. An angular rate sensor and two single-axis linear accelerometers were used to measure angular speed, angular acceleration, and linear acceleration of T1 in the sagittal plane. Two high-speed video cameras were used to track targets rigidly attached to the head, T1, and pelvis. The cervical spine kinematics were captured with a high-speed, biplane x-ray system by tracking radiopaque markers implanted into each cervical vertebra.
Technical Paper

Forensic Determination of Seat Belt Usage in Automotive Collisions: Development of a Diagnostic Tool

2006-04-03
2006-01-1128
The primary purpose of this research was to generate a “linked set” of data between collision severity, occupant weight and collision-induced seat belt markings to assist in reconstruction of motor vehicle accidents. The secondary purpose was to establish a preliminary threshold of belt load to produce known collision-induced seat belt markings. Sled tests were performed utilizing Hybrid III 5th and 50th percentile crash test dummies. Sled accelerations ranged from 10.0 g to 23.6 g and Delta-V’s from 6.4 m/s to 11.3 m/s. Post-test inspections and photographs taken of the seat belts documented collision-induced markings on components such as the D-Ring, latch plate, webbing and stitching. Belt loads were analyzed to establish preliminary thresholds for the production of observable markings.
X