Refine Your Search


Search Results


What Engineers and Managers Need to Know About Human Factors

This book provides an introduction to the role, value, scope and the unique contributions the field of human factors can bring to the design process for all products. Aimed at the engineer and manager with no formal training in the life and social sciences, it is not intended to train the methods of human factors, but rather to provide knowledge that will enable engineers and managers to determine if including human factors in the planning and execution of product design is justified. Chapters include: Reasons Engineers Provide for Limiting Emphasis on Human Factors The Academic Disciplines Supporting Human Factors Human Factors Engineering and more
Technical Paper

Turret Head Fastening Machine

The Turret Head Fastening System is an enhancement of current three position “C-frame” wing riveting machines. It was designed and built by Boeing as a fully instrumented research machine in 1991 for the 777 Airplane, and as a potential retrofit package for conventional drill, rivet, shave wing assembly machines. It was designed to automatically install rivets and bolts and perform the required hole preparation prior to fastener installation. In its current form, it will clamp a panel; and then as the fastener requires, drill, coldwork, ream, countersink the hole; inspect the hole; apply sealant when required; install threaded fasteners or rivets; torque the nut, swage the collar or upset the rivet as required; shave the rivet to ensure flushness; and finally unclamp the part - all within the current working envelope of a drill, rivet shave machine. Currently, switching from rivets to bolts requires a 5 minute tool change.
Technical Paper

The Impact of Emerging Technologies on Tactical V/STOL Airplane Design and Utility

A new look at tactical combat V/STOL design and utility as affected by emerging technology and mission concepts is given in this paper. History has shown that a certain level of useful load fraction must be attained before an airplane system can be considered operationally successful. Technology trends reviewed in this paper suggest that the time is here or at least near for V/STOL tactical aircraft to achieve a truly viable useful load fraction. Propulsion, structure, and controls technologies will contribute to the success of the tactical V/STOL system. In addition, aerodynamic technology as related to interference effects in hover and transition, and as required for efficient supersonic cruise and combat, significantly impacts the design solution. A unique approach to system design risk assessment is described with results giving technology leverage as a function of design options.
Technical Paper

Static Calibration and Compensation of the Tau Parallel Kinematic Robot Using a Single 6-DOF Laser Tracker

Parallel kinematic mechanisms (PKMs) offer advantages of high stiffness to mass ratios, greater potential for accuracy and repeatability, and lower cost when compared to traditional assembly machines. Because of this, there is a strong interest in using PKMs for aerospace assembly and joining operations. This paper looks at the calibration of a prototype Gantry TAU robot by extending the higher-order implicit loop calibration techniques developed for serial link mechanisms to parallel link mechanisms. The kinematic model is based on the geometric model proposed by Dressler et al., augmented with a cubic spline error model of the motion errors for each of the three translation actuators resulting in 185 parameters. Measurements are taken with a 6-DOF laser tracker, and the kinematic parameters are solved as the maximum likelihood parameter estimate.
Journal Article

Soaring with Eagles: Birdstrike Analysis in the Design and Operation of New Airplanes

We live in an era of increasing twin-engine commercial airplane operations, with large and very quiet high bypass ratio engines. At the same time, due to several decades of increased attention to the environment, we have large and increasing hazardous species bird populations. These trends, when combined, are not a prescription for continued assurance of a remarkable and enviable safety record for commercial aviation. Therefore, greater diligence must be placed on the evaluation of the current and future aviation wildlife hazard. We have some new weapons in this fight for greater capability to live with this situation. The basic problem is that different databases are populated independently from one another and often contain conflicting, contradictory, and erroneous data. Databases that were used individually, but not necessarily combined, are being utilized in a conjoined methodology to give us a better picture of the actual risk involved.
Technical Paper

Reliability Prediction Models for Microcircuits

Some of the common methods of reliability prediction utilizing calendar or lot size dependence and various "k" factors for complexity, end use, product family, and environment are briefly reviewed. These techniques, although sometimes accurate and simple, do not provide adequate reliability tradeoff information and do not fully treat the effects of vendor variability and improvements in the state-of-the-art. From these techniques it is frequently difficult to understand causes of observed failure rates and to determine what can be done to achieve cost-effective reliability. One method of alleviating these objections is to derive a model based on microcircuit failure mode and mechanism knowledge. The current status of microcircuit failure knowledge is reviewed. Considerable use is made of data which has been acquired at very high stress levels and the relationship between this data and end use data is discussed.
Technical Paper

Refurbishment of 767 ASAT Drill-Rivet-Lockbolt Machines

Boeing has relied upon the 767 ASAT (ASAT1) since 1983 to fasten the chords, stiffeners and rib posts to the web of the four 767 wing spars. The machine was originally commissioned with a Terra five axis CNC control. The Terra company went out of business and the controls were replaced with a custom DOS application in 1990. These are now hard to support so Boeing solicited proposals. Electroimpact proposed to retrofit with a Fanuc 31I CNC, and in addition, to replace all associated sensors, cables and feedback systems. This work is now complete on two of the four machines. Both left front and right front are in production with the new CNC control.
Technical Paper

Progressive Disintermediation of the Commercial Aviation Industry Ecosystem

The re-invention of the global aviation industry is well underway. This dramatic change is being achieved through the use of emergent technology to facilitate a progressive disintermediation of traditional aviation business solutions and services. This progressive disintermediation will continue unabated as this technology is adopted and deployed within the aviation industry. The challenge and opportunity is to whom will lead this re-invention and how will it be accomplished. The integrated use of rapidly evolving technology (Blockchain, IoT, Artificial Intelligence, 5G Cellular Technology and Mobile Edge Computing) is facilitating an integrated more industry cooperative approach enabling this progressive disintermediation.
Technical Paper

Progress in Rotorcraft Icing Computational Tool Development

The formation of ice over lifting surfaces can affect aerodynamic performance. In the case of helicopters, this loss in lift and the increase in sectional drag forces will have a dramatic effect on vehicle performance. The ability to predict ice accumulation and the resulting degradation in rotor performance is essential to determine the limitations of rotorcraft in icing encounters. The consequences of underestimating performance degradation can be serious and so it is important to produce accurate predictions, particularly for severe icing conditions. The simulation of rotorcraft ice accretion is a challenging multidisciplinary problem that until recently has lagged in development over its counterparts in the fixed wing community. But now, several approaches for the robust coupling of a computational fluid dynamics code, a rotorcraft structural dynamics code and an ice accretion code have been demonstrated.
Journal Article

Parametric Life Cycle Assessment for the Design of Aircraft

Current methods of life cycle assessment (LCA) include input-output (IO) models and process-based LCA. These methods either require excessive effort and time to reach a conclusion (process LCA) or do not adequately model how a change in a product's design will affect the environmental footprint (IO LCA). A variation of process-based LCA developed specifically for aircraft is presented in this study. A tool implementing this LCA, “qUWick,” is rapid and easily applicable to multi-disciplinary design optimization of aircraft. Models developed for the material production, manufacturing, usage, and end-of-life of an aircraft are examined. Outputs of qUWick are discussed for future air vehicles. When compared to process LCAs with similar boundaries, qUWick gives similar results, however qUWick models several stages of an aircraft's life cycle more accurately than other aircraft process-based LCAs.
Technical Paper

Oscillating Airfoil Icing Tests in the NASA Glenn Research Center Icing Research Tunnel

A team from the USA rotorcraft industry, NASA, and academia was established to create a validated high-fidelity computational fluid dynamics (CFD) icing tool for rotorcraft. Previous work showed that an oscillating blade with a periodic variation in angle of attack causes changes in the accreted ice shape and this makes a significant change in the airfoil drag. Although there is extensive data for ice accumulation on a stationary airfoil section, high-quality icing-tunnel data on an oscillating airfoil is scarce for validating the rotorcraft icing problem. In response to this need, a two-dimensional (2D) oscillating airfoil icing test was recently performed in the Icing Research Tunnel at the NASA Glenn Research Center. Three leading-edge specimens for an existing 15-inch chord test apparatus were designed and instrumented to provide the necessary data for the CFD code validation.
Journal Article

Optimization Methods for Portable Automation Equipment Utilizing Motion Tracking Technology

The use of portable automated equipment has increased in recent years with the introduction of flex track, crawling robots, and other innovative machine configurations. Portable automation technologies such as these lower infrastructure costs by minimizing factory floor space requirements and foundation expenses. Portable automation permits a higher density of automated equipment to be used adjacent to aircraft during assembly. This equipment also allows concurrent work in close proximity to automated processes, promotes flexibility for changes in rate, build plan, and floor space requirements throughout the life of an airplane program. This flexibility presents challenges that were not encountered with traditional fixed machine drilling centers. The work zone surrounding portable machines is relatively small, requiring additional setup time to relocate and position machines near the airframe.
Technical Paper

Mir Space Station Trace Contaminant Assessment

Eight SUMMA passivated sampling canisters were shipped to the Russian Space Station Mir in February of 1995 to assess ambient trace contaminant concentrations. Prior to flight, the canisters were injected with isotope labeled surrogates and internal standards to measure potential negative impacts on measurement accuracy caused by the trip environmental conditions of launch and return. Three duplicate canister samples were collected in parallel with Russian sorbent samples to acquire data for comparative purposes. A total of 32 target and 13 non-target volatile compounds were detected in each of the samples analyzed. The concentrations of the compounds remained relatively consistent for the three sampling events, and all of the concentrations of detected contaminants were well below both US and Russian Spacecraft Maximum Allowable Concentrations (SMAC). Five different fluorocarbons were consistently detected at relatively high concentrations.

Managing Aerospace Projects

Over the next twenty years, the role and contributions of successfully managed projects will continue to grow in importance to aerospace organizations, especially considering the demands of emerging markets. The accompanying challenges will be how to effectively reduce product and process cost where known (incremental) and unknown (transformational) technological innovation is required. Managing Aerospace Projects brings together ten seminal SAE technical papers that support the vision of a more holistic and integrated approach to highly complex projects. Using the concept of project management levers, Dr.

Integrated Vehicle Health Management - System of Systems Integration

Integrated Vehicle Health Management (IVHM) is the unified capability of a system of systems (SoS) to assess the current or future state of the member system health, and integrate it within a framework of available resources and operational demand. As systems complexities have increased, so have system support costs, driven by more frequent and often enigmatic subsystem failures. IVHM strategies can be used to mitigate these issues by taking a Systems of Systems view. Combined with advanced decision support methods, this approach can be used to more effectively predict, isolate, schedule, and repair failed subsystems, reducing platform support costs and minimizing platform down time. Integrated Vehicle Health Management- System of Systems Integration brings together ten seminal SAE technical papers addressing the challenges and solutions to maintaining highly complex vehicles.
Journal Article

Flight in Icing Regulatory Evolution and the Influence on Aircraft Design

Flight in icing for transport category aircraft certification presents a particularly challenging set of considerations to establish adequate safety commensurate with the associated risk while balancing design complexity and efficiency. A review highlighting important aspects of the regulatory evolution and guiding principles for flight in icing certification is presented, including the current standards and recent rulemaking activity.
Journal Article

Flex Track One Sided One Up Assembly

The Boeing Company is striving to improve quality and reduce defects and injuries through the implementation of lightweight “Right Sized” automated drill and fasten equipment. This has lead to the factory adopting Boeing developed and supplier built flex track drill and countersink machines for drilling fuselage circumferential joins, wing panel to spar and wing splice stringers. The natural evolution of this technology is the addition of fastener installation to enable One Up Assembly. The critical component of One Up Assembly is keeping the joint squeezed tightly together to prevent burrs and debris at the interface. Traditionally this is done by two-sided machines providing concentric clamp up around the hole while it is being drilled. It was proposed that for stiff structure, the joint could be held together by beginning adjacent to a tack fastener, and assemble the joint sequentially using the adjacent hole clamp up from the previous hole to keep the joint clamped up.
Technical Paper

Fitting and Coolant Line Insulation Design for International Space Station

International Space Station (ISS) will provide Low Temperature (LT), and Moderate Temperature (MT) Internal Thermal Control System (ITCS) coolant to payloads and other users. LT ITCS delivers 38° to 42° F coolant MT ITCS delivers 62° to 65° F coolant. By using LT ITCS cabin air, dew point is controlled by the Thermal and Humidity Control (THC) subsystem to be 49° to 55° F when manned. Since the dew point temperature is above the LT ITCS nominal temperature, any components that have this coolant in them can be expected to condense moisture on their surfaces. The components that are affected are many. This paper, however, is concerned only with the lines and Quick Disconnects (QDs) that are a part of the total ITCS system.
Technical Paper

First Level of Life Support System (LSS) Closure: Optimization of LSS Structure for Different Functioning Times

To investigate LSS an EXCEL Spreadsheet is designed. The spreadsheet consists of data on two different LSS types: biological and physico-chemical. Biological LSS include those based on hydrogen-oxidizing bacteria, microalgae, higher plants, higher plants and mushrooms, and higher plants with physical/chemical incineration of wastes. Simulations using this spreadsheet, showed that LSS with higher plants realize different structure of LSS (ratio of biological species, their mass, etc.) with different operation time. Thus, the system with higher plants has been found to have three different structures if incineration is used and six structures in opposite case. In the case of a vegetarian diet, 100% closure can be obtained.
Journal Article

Fabrication of Titanium Aerospace Hardware using Elevated Temperature Forming Processes

Titanium is a difficult material to fabricate into complex configurations. There is several elevated temperature forming processes available to produce titanium components for aerospace applications. The processes to be discussed are Superplastic Forming (SPF), hot forming and creep forming. SPF uses a tool that contains the required configuration and seals around the periphery so inert gas pressure can be used to form the material. Of the processes to be discussed, this is the one that can produce the most complex shapes containing the tightest radii. A variation of the process combines an SPF operation with diffusion bonding (SPF/DB) of two or more pieces of titanium together to produce integrally stiffened structure containing very few fasteners. Another process for shaping titanium is hot forming. In this process, matched metal tools, offset by the thickness of the starting material, are used to form the part contour at elevated temperature.