Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Reducing Design Time, Part Cost, and Manufacturing Risk on New Airplane Projects Using Intelligent Software Solutions

2007-09-17
2007-01-3927
New and derivative commercial jetliner programs face increased pressure to reduce cost, shorten development cycles, increase production rates, and create an increasingly fuel efficient aircraft. The industry also has limited engineering resources and suppliers with manufacturing capacity constraints. Designing parts right the first time, while concurrently taking into account available and proven manufacturing techniques, is crucial to meeting product development schedule and profitability goals. New, knowledge-based software solutions bridge the gap between design, manufacturing, and the supply chain, assuring timely, cost effective, and correctly manufactured products. Boeing Commercial Airplanes used a unique knowledge-based software solution to analyze one of the most complicated jetliner parts: the titanium part joining the wing to the aircraft body.
Technical Paper

Development of a Multi Spindle Flexible Drilling System for Circumferential Splice Drilling Applications on the 777 Airplane

2008-09-16
2008-01-2298
Flex Track Drilling systems are being used increasingly in aerospace applications providing low cost, highly efficient automated drilling systems. Certain applications like circumferential splice drilling on large size airplane fuselages require multi spindle flex track systems working in tandem to meet production efficiency requirements. This paper discusses the development of a multi spindle flex track drilling system for a circumferential splice drilling on the 777 airplane. The multi spindle system developed uses a variety of flex track carriages attached to the flexible vacuum tracks to allow for offset or wide inside drilling. Segmented machine programmes allow these multiple machines to be deployed on the same circumferential splice on the airplane providing the multi spindle system. Interfacing of the multiple spindles is achieved by a custom OEM interface using a single screen thereby ensuring simplicity of operation.
Journal Article

Average Probability Calculation Methods for System Safety Analysis

2015-09-15
2015-01-2436
Fault-tolerance in commercial aircraft applications is typically achieved by redundancy. In such redundant systems the primary component is checked before the start of a flight to see if it operates correctly. The aircraft will not take off unless the primary is functioning. Airplane manufacturers must certify the airplane systems to be safe for flight. One means of safety certification is by safety analysis which shows that the probability of failure in a typical flight is bounded. The probability bound requirement for a system is based on the criticality of system failure. Usually backup components are checked at intervals that span multiple flights. The first backup may be checked more frequently than the second or higher levels. This leads to flights where the system may have latent faults in the backup components. The probability of failure in such cases varies from flight to flight due to the different exposure times for components in the system.
Technical Paper

Automated Removal of Temporary Fasteners on Wing Panels

2000-09-19
2000-01-3031
Current practice for assembly of wing skins to wing stringers utilizes temporary aluminum lock bolts prior to squeeze riveting. Removing and replacing these fasteners is time consuming and hazardous. We have automated the wing riveters to perform this replacement process. This paper discusses the four areas of development that were carried out to accomplish this: tack fastener installation, machine vision system development, drill development and new tooling. Testing results and new findings will be discussed.
X