Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Development of a Multi Spindle Flexible Drilling System for Circumferential Splice Drilling Applications on the 777 Airplane

2008-09-16
2008-01-2298
Flex Track Drilling systems are being used increasingly in aerospace applications providing low cost, highly efficient automated drilling systems. Certain applications like circumferential splice drilling on large size airplane fuselages require multi spindle flex track systems working in tandem to meet production efficiency requirements. This paper discusses the development of a multi spindle flex track drilling system for a circumferential splice drilling on the 777 airplane. The multi spindle system developed uses a variety of flex track carriages attached to the flexible vacuum tracks to allow for offset or wide inside drilling. Segmented machine programmes allow these multiple machines to be deployed on the same circumferential splice on the airplane providing the multi spindle system. Interfacing of the multiple spindles is achieved by a custom OEM interface using a single screen thereby ensuring simplicity of operation.
Journal Article

Average Probability Calculation Methods for System Safety Analysis

2015-09-15
2015-01-2436
Fault-tolerance in commercial aircraft applications is typically achieved by redundancy. In such redundant systems the primary component is checked before the start of a flight to see if it operates correctly. The aircraft will not take off unless the primary is functioning. Airplane manufacturers must certify the airplane systems to be safe for flight. One means of safety certification is by safety analysis which shows that the probability of failure in a typical flight is bounded. The probability bound requirement for a system is based on the criticality of system failure. Usually backup components are checked at intervals that span multiple flights. The first backup may be checked more frequently than the second or higher levels. This leads to flights where the system may have latent faults in the backup components. The probability of failure in such cases varies from flight to flight due to the different exposure times for components in the system.
Technical Paper

Automated Removal of Temporary Fasteners on Wing Panels

2000-09-19
2000-01-3031
Current practice for assembly of wing skins to wing stringers utilizes temporary aluminum lock bolts prior to squeeze riveting. Removing and replacing these fasteners is time consuming and hazardous. We have automated the wing riveters to perform this replacement process. This paper discusses the four areas of development that were carried out to accomplish this: tack fastener installation, machine vision system development, drill development and new tooling. Testing results and new findings will be discussed.
Technical Paper

Analysis & Modeling Reduce Development Risks For Improving Integration of Large Aircraft Components

2002-09-30
2002-01-2640
Historically the manufacturing of aircraft fuselages with capacities of 100+ passengers requires large panels and assemblies to be integrated through processes of manipulating them into proper alignment to one another, and then fastening the panels and assemblies together. The manipulating and alignment processes typically incorporate large handling devices and cranes to move the large panels and monolithic tools or measurement alignment systems to precisely align the aircraft components. After the individual panels and assemblies are properly aligned, they can be fastened together. Normally, the fastening process is performed manually with the aid of fastener location templates. There are problems with these processes. They require high capital investments for tooling and facilities; up to two shifts (16 hours) to complete the loading, indexing, and fastening operations; and depend on a highly skilled and knowledgeable work force to minimize discrepancies.
Book

Aircraft Thermal Management: Integrated Energy Systems Analysis

2016-03-02
The simultaneous operation of all systems generating, moving, or removing heat on an aircraft is simulated using integrated analysis which is called Integrated Energy System Analysis (IESA) for this book. Its purpose is to understand, optimize, and validate more efficient system architectures for removing or harvesting the increasing amounts of waste heat generated in commercial and military aircraft. In the commercial aircraft industry IESA is driven by the desire to minimize airplane operating costs associated with increased system weight, power consumption, drag, and lost revenue as cargo space is devoted to expanded cooling systems. In military aircraft thermal IESA is also considered to be a key enabler for the successful implementation of the next generation jet fighter weapons systems and countermeasures. This book contains a selection of papers relevant to aircraft thermal management IESA published by SAE International.
Book

Aircraft Thermal Management: Systems Architectures

2016-03-02
Aircraft thermal management (ATM) is increasingly important to the design and operation of commercial and military aircraft due to rising heat loads from expanded electronic functionality, electric systems architectures, and the greater temperature sensitivity of composite materials compared to metallic structures. It also impacts engine fuel consumption associated with removing waste heat from an aircraft. More recently the advent of more electric architectures on aircraft, such as the Boeing 787, has led to increased interest in the development of more efficient ATM architectures by the commercial airplane manufacturers. The ten papers contained in this book describe aircraft thermal management system architectures designed to minimize airplane performance impacts which could be applied to commercial or military aircraft.
Book

Aircraft Thermal Management

2016-03-02
This set is comprised of two titles, Aircraft Thermal Management: Systems Architectures and Aircraft Thermal Management: Integrated Energy Systems Analysis both edited by Mark Ahlers.
X