Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Reducing Design Time, Part Cost, and Manufacturing Risk on New Airplane Projects Using Intelligent Software Solutions

2007-09-17
2007-01-3927
New and derivative commercial jetliner programs face increased pressure to reduce cost, shorten development cycles, increase production rates, and create an increasingly fuel efficient aircraft. The industry also has limited engineering resources and suppliers with manufacturing capacity constraints. Designing parts right the first time, while concurrently taking into account available and proven manufacturing techniques, is crucial to meeting product development schedule and profitability goals. New, knowledge-based software solutions bridge the gap between design, manufacturing, and the supply chain, assuring timely, cost effective, and correctly manufactured products. Boeing Commercial Airplanes used a unique knowledge-based software solution to analyze one of the most complicated jetliner parts: the titanium part joining the wing to the aircraft body.
Technical Paper

Monolithic Structure Affordability: 737 Classic Versus Next Generation

2003-09-08
2003-01-2909
One recent evolution in commercial transport structure has been the emergence of monolithic structure applications. Monolithic structure reduces the number of parts that must be managed, eliminates sub-assembly operations and contributes strongly to determinant assembly practices. The cost of three components from the Boeing 737-200 and their counterparts on the Boeing 737-600 will be compared. The mid 1960's 737-200 components were assembled from sheet metal details. The mid 1990's 737-600 components are monolithic designs and utilize superplastic forming, casting and NC machining technologies. The built-up solutions and the monolithic solutions are compared based on cost infrastructures from the 1960's and the 1990's.
Journal Article

Average Probability Calculation Methods for System Safety Analysis

2015-09-15
2015-01-2436
Fault-tolerance in commercial aircraft applications is typically achieved by redundancy. In such redundant systems the primary component is checked before the start of a flight to see if it operates correctly. The aircraft will not take off unless the primary is functioning. Airplane manufacturers must certify the airplane systems to be safe for flight. One means of safety certification is by safety analysis which shows that the probability of failure in a typical flight is bounded. The probability bound requirement for a system is based on the criticality of system failure. Usually backup components are checked at intervals that span multiple flights. The first backup may be checked more frequently than the second or higher levels. This leads to flights where the system may have latent faults in the backup components. The probability of failure in such cases varies from flight to flight due to the different exposure times for components in the system.
X