Refine Your Search



Search Results

Journal Article

Wear Dependent Tool Reliability Analysis during Cutting Titanium Metal Matrix Composites (Ti-MMCs)

Metal matrix composites (MMCs) exhibit superior characteristics such as low weight, high stiffness, and high mechanical and physical properties. Inheriting such an outstanding combination of specifications, they are nowadays considered as the promising materials in the aerospace and biomedical industries. However, the presence of high abrasive reinforcing particles in MMCs leads to severe manufacturing issues. Due to the tool-particle interactions which occur during the machining of MMCs, high tool wear and poor surface finish are induced and those elements are considered as the main drawbacks of cutting MMCs. In this study, dry turning experiments were conducted for two different inserts and coated carbide on a bar of titanium metal matrix composite (Ti-MMC). Semi-finishing machining is operated with cutting parameters based on the tool supplier's recommendations which were not fully optimized. The maximum flank wear length (VBBmax) was selected as the tool wear criteria.
Technical Paper

Validation of a Hot-Air Anti-icing Simulation Code

This paper presents CHT2D, a 2D hot air anti-icing simulation tool developed by the Advanced Aerodynamics group of Bombardier Aerospace. The tool has been developed from two main modules: the ice prediction code CANICE and the Navier-Stokes solver NSU2D, which is used to solve the hot air internal flow. A “weak” coupling beween the two modules based on function calls and information exchange has been priviledged. Three validation test cases are presented: for dry air conditions. Predictions from CHT2D agree quite well with the experiments. Preliminary results are also presented for a test case in icing conditions for different heat loads from the anti-icing system, to study the effect on the accumulated ice.
Journal Article

Towards Standardising Methods for Reporting the Embodied Energy Content of Aerospace Products

Within the aerospace industry there is a growing interest in evaluating and reducing the environmental impacts of products and related risks to business. Consequently, requests from governments, customers, manufacturers, and other interested stakeholders, for environmental information about aerospace products are becoming widespread. Presently, requests are inconsistent and this limits the ability of the aerospace industry to meet the informational needs of various stakeholders and reduce the environmental impacts of their products in a cost-effective manner. Energy consumption is a significant business cost, risk, and a simple proxy value for overall environmental impact. This paper presents the initial research carried out by an academic and industry consortium to develop standardised methods for calculating and reporting the embodied manufacturing energy content of aerospace products.
Technical Paper

The State of PRM Accessibility in Single Aisle Commercial Aircraft

The aging of the world population, and call for greater equality in access to public environments has led to an increase in design for persons with reduced mobility (PRM). There are numerous physical and operational constraints and parameters to overcome when designing a successful and marketable PRM environment. Each program evaluates what is to be considered reasonable based on these guidelines (cost, weight, manufacturability, airframe curvature, footprint required, regulations, and usability). However, there are other less tangible parameters to address. For example, what level of dignity or level of privacy does the PRM environment allow? Does the design require additional assistance to access, or can those who are able make independent use of the environment? Most aircraft manufacturers and design entities have recognized the need to improve accessibility aboard single aisle commercial aircraft (Airbus 320 family, Boeing 737, Embraer 190, Bombardier CSERIES).
Technical Paper

The Effect of Wing Leading Edge Contamination on the Stall Characteristics of Aircraft

Lessons learned from analysis of in-service icing incidents are described. The airfoil and wing design factors that define an aircraft's natural stall characteristics are explored, including the aerodynamic effects of contamination. Special attention is given to contamination in the form of “roughness” along wing leading edges typical of frost. In addition, the key aerodynamic effects of ground proximity and sideslip/crosswind during the take-off rotation are described. An empirical method, that can be used to predict a wing's sensitivity to wing leading edge roughness, is demonstrated. The paper explores the in-service differences of aircraft that incorporate “hard”, “supercritical” and “slatted” wings. The paper attempts to explain why the statistical evidence appears to favor the slatted wing for winter operations.
Technical Paper

The Bombardier Flight Test Center - Meeting the Challenge

In 1991, shortly after acquiring Learjet, Bombardier consolidated all flight testing of new aircraft at the Wichita, Kansas facility. Since then, nine new aircraft were certified, and the Flight Test Center grew from 20 dedicated flight test personnel, to nearly 500 dedicated flight test personnel. The Canadian based company in conjunction with several international risk sharing partners, has created a highly dynamic flight test environment, tasking the Flight Test Center with the challenge of bringing a new product to market each year. This rapid growth was centered on supporting three aircraft product lines; Learjet, Canadair, and DeHavilland. New hangars, telemetry, and ground support facilities were built to accommodate the increased flight test demands. The Bombardier Flight Test Center, otherwise known as BFTC, conducts flight test operations on a seven day per week schedule, and in 1999, flew over 5000 flight test hours in development and certification testing.
Technical Paper

Tailplane with Positive Camber for Reduced Elevator Hinge Moment

The Learjet 85 is a business jet with an unpowered manual elevator control and is designed for a maximum dive Mach number of 0.89. During the early design, it was found that the stick force required for a 1.5g pull-up from a dive would exceed the limit set by FAA regulations. A design improvement of the tailplane was initiated, using 2D and 3D Navier-Stokes CFD codes. It was discovered that a small amount of positive camber could reduce the elevator hinge moment for the same tail download at high Mach numbers. This was the result of the stabilizer forebody carrying more of the tail download and the elevator carrying less. Consequently, the elevator hinge-moment during recovery from a high-speed dive was lower than for the original tail. Horizontal tails are conventionally designed with zero or negative camber since a positive camber can have adverse effects on tail stall and drag.
Technical Paper

Structural Health Monitoring in Civil Aviation: Applications and Integration

In civil aviation the main driver for Structural Health Monitoring (SHM) is to provide maintenance and ownership benefits. The maintenance benefits are defined in terms of improving maintenance planning, increasing inspection intervals and reducing inspection cost. The ownership benefits can be measured in residual value and life extension. In this paper different aspects of SHM implementation are discussed for fatigue monitoring and fatigue damage sensing with a consideration of minimizing challenges for SHM implementation. First, the current Fatigue Monitoring implementation scenarios for the most representative agile military aircraft are reviewed. In the following some aircraft utilization results obtained from analyzing different airlines are presented. The obtained results show a better possibility of categorizing fleet of an airline in comparison with agile military aircraft.
Journal Article

Reliability Modeling Approach and Hydraulic Actuators Designed Hinge-Moment Capability

The hydraulic actuators are used to power flight control surfaces of the aircraft and to ensure surface movement. A system of two or three actuators is usually designed depending on the surface and intuitively these actuators are considered as a redundant architecture from a reliability and functionality point of view. The proper reliability modeling of the system of actuators must consider the system's functionality and design constraints for the remaining available actuator hinge-moment in the event of a partial or total actuator failure. As a result, this will affect the reliability assessment of that design. Furthermore, this system of actuators is also designed to provide a second function involving an assurance of the surface stiffness and damping. Generally, this second function does not require necessarily the same number of available actuators in order to be fully provided.
Journal Article

Reliability Improvement of Lithium Cells Using Laser Welding Process with Design of Experiments

Manufacturing operations introduce unreliability into hardware that is not ordinarily accounted for by reliability design engineering efforts. Inspections and test procedures normally interwoven into fabrication processes are imperfect, and allow defects to escape which later result in field failures. Therefore, if the reliability that is designed and developed into an equipment/system is to be achieved, efforts must be applied during production to insure that reliability is built into the hardware. There are various ways to improve the reliability of a product. These include: Simplification Stress reduction/strength enhancement Design Improvement Using higher quality components Environmental Stress Screening before shipment Process Improvements, etc. This paper concentrates on ‘Manufacturing Process Improvement’ effort through the use of design of experiments, (DOE). Hence, improved levels of reliability can be achieved.
Journal Article

Processing CSeries Aircraft Panels

Bombardier faced new manufacturing process challenges drilling and fastening CSeries* aircraft panels with multi-material stacks of composite (CFRP), titanium and aluminum in which Gemcor responded with a unique, flexible CNC Drivmatic® automatic fastening system, now in production at Bombardier. This joint technical paper is presented by Bombardier, expounding on manufacturing process challenges with the C Series aircraft design requirements and Gemcor presenting a unique solution to automatically fasten CFRP aft fuselage panels and aluminum lithium (Al Li) cockpit panels with the same CNC Drivmatic® system. After installation and preliminary acceptance at Bombardier, the CNC system was further enhanced to automatically fasten the carbon fiber pressure bulkhead dome assembly.
Journal Article

Process Change: Redesign of Composite Parts for Structural Integrity

The objective of this document is to present the methodology used to verify the structural integrity of a redesigned composite part. While shifting the manufacturing process of a composite part from pre-impregnated to a liquid resin injection process, the Composites Development team at Bombardier Aerospace had to redesign the component to a new set of design allowables. The Integrated Product Development Team (IPDT) was able to quickly provide a turnkey solution that assessed three aspects of airframe engineering: Design, Materials & Processes (M&P) and Stress. The focus of this paper will be the stress substantiation process led by the Stress Engineers. It will also bring up the synergies with M&P that are unique to the IPDT approach. The stress substantiation process required three distinct checks be confirmed.
Journal Article

Probability Assessment of the Fuel Tank Structural Feature Failures

The paper provides an approach to establish compliance with current regulatory standards applicable to lightning protection of the fuel tank structure for Non-Fault Tolerant Feature Failures (NFTFF) through a numerical probability assessment. The proposed procedure is using the criteria defined in the FAA Policy Guidance for fuel tank structural lightning protection and is aligned with the regulatory path described as petitioning for an exemption. Failure modes of structural components for which fault tolerance has been shown to be impractical need to be addressed and the overall likelihood of fuel vapour ignition due to these failure modes must be shown to be extremely improbable. In order to accomplish this, the quantitative assessment of the overall probability of fuel vapour ignition is performed, along with all relevant data to support the probabilities determined for the purpose of this analysis.
Journal Article

Preforming of a Fuselage C-Shaped Frame Manufactured by Resin Transfer Molding

The need for efficient manufacturing approaches has emerged with the increasing usage of composites for structural components in commercial aviation. Resin Transfer Molding (RTM), a process where a fiber preform is injected with resin into a closed tool, can achieve high fiber content required for structural components as well as improved dimensional accuracy since all surfaces are controlled by a tool surface. Moreover, RTM is well suited for parts that can be standardized throughout the aircraft, such as a fuselage frames and stringers. The objective of this investigation is to develop a preforming approach for a C-Shaped Fuselage frame. Two approaches are proposed: tri-axial braiding and hand lay-up of Non-Crimp Fabrics. The fiber architecture of the basic materials as well as the complete preforms is explained. The necessary preforming operations are detailed. The quality control measurement of fiber orientation and thickness are presented.
Technical Paper

Prediction of Airfoil Performance with Leading Edge Roughness

Leading edge roughness is known to influence the aerodynamic performance of wings and airfoil sections. Aerodynamic tests show that these effects vary with the type and texture of the applied roughness. The quantification of the relationship between different types of roughness is not very clear. This makes the comparison of results from different tests difficult. An attempt has been made to find a relationship between randomly distributed roughness using cylinders of different heights and densities, roughness using ballotini, and equivalent sand grain roughness. A CFD method based on the Cebeci-Chang roughness model was used to generate correlations with experimental data. It is found that the variation of the size and density of individual roughness elements can be represented using one roughness parameter, Rp, which is equivalent to the sand grain roughness parameter used in the Cebeci-Chang model.
Technical Paper

Porosity Assessment in Large Composite Components: Realization and Challenges

Non Destructive Inspection (NDI) of large Out of Autoclave Cure primary monolithic and sandwich Composite structures is challenging due to high requirement for flaw detection and characterization among porosity, delamination, disbond, foreign material, crushed core, dry fiber. Large scale NDI inspection with semi-automated and automated system is presented for flaw detection/characterization and porosity assessment methodology is described with results for high porosity level assessment in monolithic and sandwich structures.
Journal Article

Part Redesign: From Fastened Assembly to Co-Cured Concept

During the course of an aircraft program, cost and weight savings are two major areas demanding constant improvements. An Integrated Product Development Team (IPDT) was set to the task of proposing potential improvements to an aircraft under development. From a list of potential parts, the IPDT selected one which was considered as the most suitable to leverage a co-curing process. In the aircraft manufacturing industry, any major modification to a part design should follow the program's means of compliance to certification. Furthermore, to demonstrate the new design's safety, sizing methodology and all supplementary testing must fit in the certification strategy. The IPDT approach was used to ensure the maturity of both process and part. Indeed, a mature turnkey solution can be implemented quickly on the shop floor. This IPDT approach is detailed in another SAE 2013 technical paper entitled: “A Novel Approach for Technology Development: A Success Story” [3].
Technical Paper

Optimal Traceability for IMA System-of-Systems

Traceability has always been considered a useful but costly activity and different methods have been applied to reduce this cost. The current paper constitutes an attempt to improve these methods by introducing an optimal traceability process to be used in the context of RTCA DO-297 “Integrated Modular Avionics (IMA) Development Guidance and Certification Considerations”. The paper starts by comparing the definitions of traceability from DO-297 and the related development guidelines (i.e. ARP4754A, DO-254 and DO-178B). The paper continues by classifying the traceability methods recommended by the guidelines and introducing a performance criterion for optimal traceability based on category theory. This criterion addresses the possibility of information loss present in the current traceability methods. The paper proposes an optimal traceability process (i.e. that guarantees that information is not lost) and exemplifies it. The paper ends by recommending further enhancements.
Technical Paper

Multi-level Modeling Methodology for Aircraft Thermal Architecture Design

This paper proposes a new methodology to conduct thermal analysis in the conceptual phase of the aircraft development process. Traditionally, thermal analysis is conducted after the system architecture has already been defined. The aircraft system thermal environment evaluation may lead to late design changes that can have a significant impact on the development process. To reduce the risk of late design changes, thermal requirements need to be defined and validated in the conceptual design phase. This research paper introduces a novel multi-level modeling strategy based on a bottom-up approach. It proposes an automatic geometrical simplification procedure for Computational Fluid Dynamic (CFD) analysis, a methodology for the generation of analytical correlations based on highly detailed methods, and a thermal risk assessment approach based on dimensionless numbers.
Journal Article

Multi-Axis Serially Redundant, Single Channel, Multi-Path FBW Flight Control System

A multi-axis serially redundant, single channel, multi-path FBW (FBW) control system comprising: serially redundant flight control computers in a single channel where only one “primary” flight control computer is active and controlling at any given time; a matrix of parallel flight control surface controllers including stabilizer motor control units (SMCU) and actuator electronics control modules (AECM) define multiple control paths within the single channel, each implemented with dissimilar hardware and which each control the movement of a distributed set of flight control surfaces on the aircraft in response to flight control surface commands from the primary flight control computer, and a set of (pilot and co-pilot) controls and aircraft surface/reference/navigation sensors and systems which provide input to a primary flight control computer and are used to generate the flight control surface commands in accordance with the control law algorithms implemented in the flight control computers.