Refine Your Search

Topic

Search Results

Technical Paper

The Effects on Diesel Combustion and Emissions of Reducing Inlet Charge Mass Due to Thermal Throttling with Hot EGR

1998-02-23
980185
This paper is a complementary to previous investigations by the authors (1,2,3,4) on the different effects of EGR on combustion and emissions in DI diesel engine. In addition to the several effects that cold EGR has on combustion and emissions the application of hot EGR results in increasing the inlet charge temperature, thereby, for naturally aspirated engines, lowering the inlet charge mass due to thermal throttling. An associated consequence of thermal throttling is the reduction in the amount of oxygen in the inlet charge. Uncooled EGR, therefore, affects combustion and emissions in two ways: through the reduction in the inlet charge mass and through the increase in inlet charge temperature. The effect on combustion and emissions of increasing the inlet charge temperature (without reducing the inlet charge mass) has been dealt with in ref. (1).
Technical Paper

The Application of Controlled Auto-Ignition Gasoline Engines -The Challenges and Solutions

2019-04-02
2019-01-0949
Controlled Auto-Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI), has the potential to simultaneously reduce the fuel consumption and nitrogen oxides emissions of gasoline engines. However, narrow operating region in loads and speeds is one of the challenges for the commercial application of CAI combustion to gasoline engines. Therefore, the extension of loads and speeds is an important prerequisite for the commercial application of CAI combustion. The effect of intake charge boosting, charge stratification and spark-assisted ignition on the operating range in CAI mode was reviewed. Stratified flame ignited (SFI) hybrid combustion is one form to achieve CAI combustion under the conditions of highly diluted mixture caused by the flame in the stratified mixture with the help of spark plug.
Technical Paper

Reduction of Methane Slip Using Premixed Micro Pilot Combustion in a Heavy-Duty Natural Gas-Diesel Engine

2015-09-01
2015-01-1798
An experimental study has been carried out with the end goal of minimizing engine-out methane emissions with Premixed Micro Pilot Combustion (PMPC) in a natural gas-diesel Dual-Fuel™ engine. The test engine used is a heavy-duty single cylinder engine with high pressure common rail diesel injection as well as port fuel injection of natural gas. Multiple variables were examined, including injection timings, exhaust gas recirculation (EGR) percentages, and rail pressure for diesel, conventional Dual-Fuel, and PMPC Dual-Fuel combustion modes. The responses investigated were pressure rise rate, engine-out emissions, heat release and indicated specific fuel consumption. PMPC reduces methane slip when compared to conventional Dual-Fuel and improves emissions and fuel efficiency at the expense of higher cylinder pressure.
Technical Paper

Progress in Diesel HCCI Combustion Within the European SPACE LIGHT Project

2004-06-08
2004-01-1904
The purpose of the European « SPACE LIGHT » (Whole SPACE combustion for LIGHT duty diesel vehicles) 3-year project launched in 2001 is to research and develop an innovative Homogeneous internal mixture Charged Compression Ignition (HCCI) for passenger cars diesel engine where the combustion process can take place simultaneously in the whole SPACE of the combustion chamber while providing almost no NOx and particulates emissions. This paper presents the whole project with the main R&D tasks necessary to comply with the industrial and technical objectives of the project. The research approach adopted is briefly described. It is then followed by a detailed description of the most recent progress achieved during the tasks recently undertaken. The methodology adopted starts from the research study of the in-cylinder combustion specifications necessary to achieve HCCI combustion from experimental single cylinder engines testing in premixed charged conditions.
Technical Paper

Potentials of External Exhaust Gas Recirculation and Water Injection for the Improvement in Fuel Economy of a Poppet Valve 2-Stroke Gasoline Engine Equipped with a Two-Stage Serial Charging System

2018-04-03
2018-01-0859
Engine downsizing is one of the most effective means to improve the fuel economy of spark ignition (SI) gasoline engines because of lower pumping and friction losses. However, the occurrence of knocking combustion or even low-speed pre-ignition at high loads is a severe problem. One solution to significantly increase the upper load range of a 4-stroke gasoline engine is to use 2-stroke cycle due to the double firing frequency at the same engine speed. It was found that a 0.7 L two-cylinder 2-stroke poppet valve gasoline engine equipped with a two-stage serial boosting system, comprising a supercharger and a downstream turbocharger, could replace a 1.6 L naturally aspirated 4-stroke gasoline engine in our previous research, but its fuel economy was close to that of the 4-stroke engine at upper loads due to knocking combustion.
Technical Paper

Optimisation of In-Cylinder Flow for Fuel Stratification in a Three-Valve Twin-Spark-Plug SI Engine

2003-03-03
2003-01-0635
In-cylinder flow was optimised in a three-valve twin-spark-plug SI engine in order to obtain good two-zone fuel fraction stratification in the cylinder by means of tumble flow. First, the in-cylinder flow field of the original intake system was measured by Particle Image Velocimetry (PIV). The results showed that the original intake system did not produce large-scale in-cylinder flow and the velocity value was very low. Therefore, some modifications were applied to the intake system in order to generate the required tumble flow. The modified systems were then tested on a steady flow rig. The results showed that the method of shrouding the lower part of the intake valves could produce rather higher tumble flow with less loss of the flow coefficient than other methods. The optimised intake system was then consisted of two shroud plates on the intake valves with 120° angles and 10mm height. The in-cylinder flow of the optimised intake system was investigated by PIV measurements.
Technical Paper

Numerical Study of Effects of Fuel Injection Timings on CAI/HCCI Combustion in a Four-Stroke GDI Engine

2005-04-11
2005-01-0144
The Controlled Auto-Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI) was achieved by trapping residuals with early exhaust valve closure in conjunction with direct injection. Multi-cycle 3D engine simulations have been carried out for parametric study on four different injection timings, in order to better understand the effects of injection timings on in-cylinder mixing and CAI combustion. The full engine cycle simulation including complete gas exchange and combustion processes was carried out over several cycles in order to obtain the stable cycle for analysis. The combustion models used in the present study are the Shell auto-ignition model and the characteristic-time combustion model, which were modified to take the high level of EGR into consideration. A liquid sheet breakup spray model was used for the droplet breakup processes.
Technical Paper

Numerical Investigation of Diesel-Spray-Orientated Piston Bowls on Natural Gas and Diesel Dual Fuel Combustion Engine

2020-04-14
2020-01-0311
Low combustion efficiency and high hydrocarbon emissions at low loads are key issues of natural gas and diesel (NG-diesel) dual fuel engines. For better engine performance, two diesel-spray-orientated (DSO) bowls were developed based on the existing diesel injector of a heavy-duty diesel engine with the purpose of placing more combustible natural gas/air mixture around the diesel spray jets. A protrusion-ring was designed at the rim of the piston bowl to enhance the in-cylinder flame propagation. Numerical simulations were conducted for a whole engine cycle at engine speed of 1200 r/min and indicated mean effective pressure (IMEP) of 0.6 MPa. Extended coherent flame model 3 zones (ECFM-3Z) combustion model with built-in soot emissions model was employed. Simulation results of the original piston bowl agreed well with the experimental data, including in-cylinder pressure and heat released rate (HRR), as well as soot and methane emissions.
Book

Laser Diagnostics and Optical Measurement Techniques in Internal Combustion Engines

2012-07-30
The increasing concern about CO2 emissions and energy prices has led to new CO2 emission and fuel economy legislation being introduced in world regions served by the automotive industry. In response, automotive manufacturers and Tier-1 suppliers are developing a new generation of internal combustion (IC) engines with ultra-low emissions and high fuel efficiency. To further this development, a better understanding is needed of the combustion and pollutant formation processes in IC engines. As efficiency and emission abatement processes have reached points of diminishing returns, there is more of a need to make measurements inside the combustion chamber, where the combustion and pollutant formation processes take place. However, there is currently no good overview of how to make these measurements.
Technical Paper

Investigation of Valve Timings on Lean Boost CAI Operation in a Two-stroke Poppet Valve DI Engine

2015-09-01
2015-01-1794
Controlled Auto Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), is one of the most promising combustion technologies to reduce the fuel consumption and NOx emissions. In order to take advantage of the inherent ability to retain a large and varied amount of residual at part-load condition and its potential to achieve extreme engine downsizing of a poppet valve engine running in the 2-stroke cycle, a single cylinder 4-valves camless direct injection gasoline engine has been developed and employed to investigate the CAI combustion process in the 2-stroke cycle mode. The CAI combustion is initiated by trapped residual gases from the adjustable scavenging process enabled by the variable intake and exhaust valve timings. In addition, the boosted intake air is used to provide the in-cylinder air/fuel mixture for maximum combustion efficiency.
Technical Paper

Innovative Ultra-low NOx Controlled Auto-Ignition Combustion Process for Gasoline Engines: the 4-SPACE Project

2000-06-19
2000-01-1837
The purpose of the 4-SPACE (4-Stroke Powered gasoline Auto-ignition Controlled combustion Engine) industrial research project is to research and develop an innovative controlled auto-ignition combustion process for lean burn automotive gasoline 4-stroke engines application. The engine concepts to be developed could have the potential to replace the existing stoichiometric / 3-way catalyst automotive spark ignition 4-stroke engines by offering the potential to meet the most stringent EURO 4 emissions limits in the year 2005 without requiring DeNOx catalyst technology. A reduction of fuel consumption and therefore of corresponding CO2 emissions of 15 to 20% in average urban conditions of use, is expected for the « 4-SPACE » lean burn 4-stroke engine with additional reduction of CO emissions.
Technical Paper

Hydrogen Engine Insights: A Comprehensive Experimental Examination of Port Fuel Injection and Direct Injection

2024-04-09
2024-01-2611
The environmental and sustainable energy concerns in transport are being addressed through the decarbonisation path and the potential of hydrogen as a zero-carbon alternative fuel. Using hydrogen to replace fossil fuels in various internal combustion engines shows promise in enhancing efficiency and achieving carbon-neutral outcomes. This study presents an experimental investigation of hydrogen (H2) combustion and engine performance in a boosted spark ignition (SI) engine. The H2 engine incorporates both port fuel injection (PFI) and direct injection (DI) hydrogen fuel systems, capable of injecting hydrogen at pressures of up to 4000 kPa in the DI system and 1000 kPa in the PFI operations. This setup enables a direct comparison of the performance and emissions of the PFI and DI operations. The study involves varying the relative air-to-hydrogen ratio (λ) at different speeds to explore combustion and engine limits for categorising and optimising operational regions.
Technical Paper

Experimental Study on Spark Assisted Compression Ignition (SACI) Combustion with Positive Valve Overlap in a HCCI Gasoline Engine

2012-04-16
2012-01-1126
The spark-assisted compression ignition (SACI) is widely used to expend the high load limit of homogeneous charge compression ignition (HCCI), as it can reduce the high heat release rate effectively while partially maintain the advantage of high thermal efficiency and low NOx emission. But as engine load increases, the SACI combustion traditionally using negative valve overlap strategy (NVO) faces the drawback of higher pumping loss and limited intake charge availability, which lead to a restricted load expansion and a finite improvement of fuel economy. In this paper, research is focused on the SACI combustion using positive valve overlap (PVO) strategy. The characteristics of SACI combustion employing PVO strategy with external exhaust gas recirculation (eEGR) are investigated. Two types of PVO strategies are analyzed and compared to explore their advantages and defects, and the rules of adjusting SACI combustion with positive valve overlap are concluded.
Technical Paper

Experimental Studies of a 4-Stroke Multi-Cylinder Gasoline Engine with Controlled Auto-Ignition (CAI) Combustion

2007-11-28
2007-01-2609
Controlled Auto-Ignition (CAI), also known as HCCI (Homogeneous Charge Compression Ignition), is increasingly seen as a very effective way of lowering both fuel consumption and emissions from gasoline engines. Therefore, it's seen as one of the best ways to meet future engine emissions and CO2 legislations. This combustion concept was achieved in a Ford production, port-injected, 4 cylinder gasoline engine. The only major modification to the original engine was the replacement of the original camshafts by a new set of custom made ones. The CAI operation was accomplished by means of using residual gas trapping made possible by the use of VCT (variable cam timing) on both intake and exhaust camshafts. When running on CAI, the engine was able to achieve CAI combustion with in a load range of 0.5 to 4.5 BMEP, and a speed range of 1000 to 3500 rpm. In addition, spark assisted CAI operation was employed to extend the operational range of low NOx and low pumping loss at part-load conditions.
Technical Paper

Experimental Studies of Gasoline Auxiliary Fueled Turbulent Jet Igniter at Different Speeds in Single Cylinder Engine

2019-09-09
2019-24-0105
Turbulent Jet Ignition (TJI) is a pre-chamber ignition system for an otherwise standard gasoline spark ignition engine. TJI works by injecting chemically active turbulent jets to initiate combustion in a premixed fuel/air mixture. The main advantage of TJI is its ability to ignite and burn, completely, very lean fuel/air mixtures in the main chamber charge. This occurs with a very fast burn rate due to the widely distributed ignition sites that consume the main charge rapidly. Rapid combustion of lean mixtures leads to lower exhaust emissions due to more complete combustion at a lower temperature. For this research, the effectiveness of the Mahle TJI system on combustion stability, lean limit and emissions in a single cylinder spark engine fueled with gasoline at different speeds was investigated. The combustion and heat release process was analyzed and the exhaust emissions were measured.
Technical Paper

Experimental Investigation on DME Assisted Gasoline CAI/HCCI Combustion with Intake Re-Breathing Valve Strategy

2015-09-01
2015-01-1818
In order to investigate feasibility of DME (Di-methyl ether) assisted gasoline CAI (controlled-auto ignition) combustion, direct DME injection is employed to act as the ignition source to trigger the auto-ignition combustion of premixed gasoline/air mixture with high temperature exhaust gas. Intake re-breathing valve strategy is adopted to obtain internal exhaust recirculation (EGR) that regulates heat release rate and ignitability of the premixed gasoline and air mixture. The effects of intake re-breathing valve timing and 2nd DME injection timing of different split injection ratios were investigated and discussed in terms of combustion characteristics, emission and efficiencies. The analyses showed that re-breathing intake valve timing had a large effect on the operation range of CAI combustion due to EGR and intake temperature variation.
Technical Paper

Experimental Investigation of the Effects of Combined Hydrogen and Diesel Combustion on the Emissions of a HSDI Diesel Engine

2008-06-23
2008-01-1787
The effects of load, speed, exhaust gas recirculation (EGR) level and hydrogen addition level on the emissions from a diesel engine have been investigated. The experiments were performed on a 2.0 litre, 4 cylinder, direct injection engine with a high pressure common-rail injection system. Injection timing was varied between 14° BTDC and TDC and injection pressures were varied from 800 bar to 1400 bar to find a suitable base point. EGR levels were then varied from 0% to 40%. Hydrogen induction was varied between 0 and 6% vol. of the inlet charge. In the case of using hydrogen and EGR, the hydrogen replaced air. The load was varied from 0 to 5.4 bar BMEP at two engine speeds, 1500 rpm and 2500 rpm. For this investigation the carbon monoxide (CO), total unburnt hydrocarbons (THC), nitrogen oxides (NOx) and the filter smoke number (FSN) were all measured.
Technical Paper

Experimental Investigation of Combustion and Emission Characteristics of the Direct Injection Dimethyl Ether Enabled Micro-Flame Ignited (MFI) Hybrid Combustion in a 4-Stroke Gasoline Engine

2018-04-03
2018-01-1247
Controlled Auto-Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), has the potential to improve gasoline engines’ efficiency and simultaneously achieve ultra-low NOx emissions. Two of the primary obstacles for applying CAI combustion are the control of combustion phasing and the maximum heat release rate. To solve these problems, dimethyl ether (DME) was directly injected into the cylinder to generate multi-point micro-flame through compression in order to manage the entire heat release of gasoline in the cylinder through port fuel injection, which is known as micro-flame ignited (MFI) hybrid combustion.
Technical Paper

Experimental Investigation of Combustion and Emission Characteristics of Stoichiometric Stratified Flame Ignited (SFI) Hybrid Combustion in a 4-Stroke PFI/DI Gasoline Engine

2019-04-02
2019-01-0960
Controlled Auto-Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), can improve the fuel economy of gasoline engines and simultaneously achieve ultra-low NOx emissions. However, the difficulty in combustion phasing control and violent combustion at high loads limit the commercial application of CAI combustion. To overcome these problems, stratified mixture, which is rich around the central spark plug and lean around the cylinder wall, is formed through port fuel injection and direct injection of gasoline. In this condition, rich mixture is consumed by flame propagation after spark ignition, while the unburned lean mixture auto-ignites due to the increased in-cylinder temperature during flame propagation, i.e., stratified flame ignited (SFI) hybrid combustion.
Technical Paper

Experimental Investigation of Combustion Characteristics, Performance, and Emissions of a Spark Ignition Engine with 2nd Generation Bio-Gasoline and Ethanol Fuels

2023-04-11
2023-01-0339
Climate change mitigation is the main challenge for the automotive industry, as the government issues legislation to combat CO2 emissions. In addition to electrification and battery electric vehicles, using low-carbon and zero-carbon fuels in Internal Combustion (IC) engines can also be an effective way to reach net zero-carbon transport. This study investigated and compared the combustion characteristics, performance and emissions of a highly boosted spark ignition (SI) engine fuelled with EU VI 95 RON E10 gasoline and blends of second-generation bio-gasoline with different ethanol contents of 5% (E5), 10% (E10), and 20% (E20). The single-cylinder SI engine was equipped with a centrally mounted high-pressure injector and supplied externally boosted air. Engine experiments were conducted at 2000 RPM and 3000 RPM with low and high load operations.
X