Refine Your Search

Topic

Search Results

Technical Paper

Variable Geometry Turbocharger Active Control Strategies for Enhanced Energy Recovery

2013-03-25
2013-01-0120
This paper describes the development of the control system for a new type of mechanical turbocharger, the Active Control Turbocharger (ACT). The main difference of ACT compared to its predecessor, the Variable Geometry Turbocharger (VGT), lies in the inlet area modulation capability which follows an oscillating (sinusoidal) profile in order to match as much as possible the similar profile of the emitted exhaust gases entering the turbine in order to capturing the highly dynamic, energy content existent in exhaust pulses. This paper describes the development of a new controller in an adaptive framework in order to improve the response of the ACT. The system has been modelled using a one-dimensional Ricardo WAVE engine simulation software and the control system which actuates the nozzle (rack) position is modelled in Matlab-Simulink and uses a map-based structure coupled with a PID controller with constant parameters.
Technical Paper

The Application of Controlled Auto-Ignition Gasoline Engines -The Challenges and Solutions

2019-04-02
2019-01-0949
Controlled Auto-Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI), has the potential to simultaneously reduce the fuel consumption and nitrogen oxides emissions of gasoline engines. However, narrow operating region in loads and speeds is one of the challenges for the commercial application of CAI combustion to gasoline engines. Therefore, the extension of loads and speeds is an important prerequisite for the commercial application of CAI combustion. The effect of intake charge boosting, charge stratification and spark-assisted ignition on the operating range in CAI mode was reviewed. Stratified flame ignited (SFI) hybrid combustion is one form to achieve CAI combustion under the conditions of highly diluted mixture caused by the flame in the stratified mixture with the help of spark plug.
Technical Paper

Study of Flame Speed and Knocking Combustion of Gasoline, Ethanol and Hydrous Ethanol (10% Water) at Different Air/Fuel Ratios with Port-Fuel Injection

2018-04-03
2018-01-0655
In this paper, an experimental study was performed to investigate characteristics of flame propagation and knocking combustion of hydrous (10% water content) and anhydrous ethanol at different air/fuel ratios in comparison to RON95 gasoline. Experiments were conducted in a full bore overhead optical access single cylinder port-fuel injection spark-ignition engine. High speed images of total chemiluminescence and OH* emission was recorded together with the in-cylinder pressure, from which the heat release data were derived. The results show that under the stoichiometric condition anhydrous ethanol and wet ethanol with 10% water (E90W10) generated higher IMEP with at an ignition timing slightly retarded from MBT than the gasoline fuel for a fixed throttle position. Under rich and stoichiometric conditions, the knock limited spark timing occurred at 35 CA BTDC whereas both ethanol and E90W10 were free from knocking combustion at the same operating condition.
Technical Paper

Simulation of the Effect of Intake Pressure and Split Injection on Lean Combustion Characteristics of a Poppet-Valve Two-Stroke Direct Injection Gasoline Engine at High Loads

2018-09-10
2018-01-1723
Poppet-valve two-stroke gasoline engines can increase the specific power of their four-stroke counterparts with the same displacement and hence decrease fuel consumption. However, knock may occur at high loads. Therefore, the combustion with stratified lean mixture was proposed to decrease knock tendency and improve combustion stability in a poppet-valve two-stroke direct injection gasoline engine. The effect of intake pressure and split injection on fuel distribution, combustion and knock intensity in lean mixture conditions at high loads was simulated with a three-dimensional computational fluid dynamic software. Simulation results show that with the increase of intake pressure, the average fuel-air equivalent ratio in the cylinder decreases when the second injection ratio was fixed at 70% at a given amount of fuel in a cycle.
Technical Paper

Reduction of Methane Slip Using Premixed Micro Pilot Combustion in a Heavy-Duty Natural Gas-Diesel Engine

2015-09-01
2015-01-1798
An experimental study has been carried out with the end goal of minimizing engine-out methane emissions with Premixed Micro Pilot Combustion (PMPC) in a natural gas-diesel Dual-Fuel™ engine. The test engine used is a heavy-duty single cylinder engine with high pressure common rail diesel injection as well as port fuel injection of natural gas. Multiple variables were examined, including injection timings, exhaust gas recirculation (EGR) percentages, and rail pressure for diesel, conventional Dual-Fuel, and PMPC Dual-Fuel combustion modes. The responses investigated were pressure rise rate, engine-out emissions, heat release and indicated specific fuel consumption. PMPC reduces methane slip when compared to conventional Dual-Fuel and improves emissions and fuel efficiency at the expense of higher cylinder pressure.
Technical Paper

Potentials of External Exhaust Gas Recirculation and Water Injection for the Improvement in Fuel Economy of a Poppet Valve 2-Stroke Gasoline Engine Equipped with a Two-Stage Serial Charging System

2018-04-03
2018-01-0859
Engine downsizing is one of the most effective means to improve the fuel economy of spark ignition (SI) gasoline engines because of lower pumping and friction losses. However, the occurrence of knocking combustion or even low-speed pre-ignition at high loads is a severe problem. One solution to significantly increase the upper load range of a 4-stroke gasoline engine is to use 2-stroke cycle due to the double firing frequency at the same engine speed. It was found that a 0.7 L two-cylinder 2-stroke poppet valve gasoline engine equipped with a two-stage serial boosting system, comprising a supercharger and a downstream turbocharger, could replace a 1.6 L naturally aspirated 4-stroke gasoline engine in our previous research, but its fuel economy was close to that of the 4-stroke engine at upper loads due to knocking combustion.
Technical Paper

Optimisation of In-Cylinder Flow for Fuel Stratification in a Three-Valve Twin-Spark-Plug SI Engine

2003-03-03
2003-01-0635
In-cylinder flow was optimised in a three-valve twin-spark-plug SI engine in order to obtain good two-zone fuel fraction stratification in the cylinder by means of tumble flow. First, the in-cylinder flow field of the original intake system was measured by Particle Image Velocimetry (PIV). The results showed that the original intake system did not produce large-scale in-cylinder flow and the velocity value was very low. Therefore, some modifications were applied to the intake system in order to generate the required tumble flow. The modified systems were then tested on a steady flow rig. The results showed that the method of shrouding the lower part of the intake valves could produce rather higher tumble flow with less loss of the flow coefficient than other methods. The optimised intake system was then consisted of two shroud plates on the intake valves with 120° angles and 10mm height. The in-cylinder flow of the optimised intake system was investigated by PIV measurements.
Technical Paper

Numerical Simulation of the Gasoline Spray with an Outward-Opening Piezoelectric Injector: A Comparative Study of Different Breakup Models

2018-04-03
2018-01-0272
The outward-opening piezoelectric injector can achieve stable fuel/air mixture distribution and multiple injections in a single cycle, having attracted great attentions in direct injection gasoline engines. In order to realise accurate predictions of the gasoline spray with the outward-opening piezoelectric injector, the computational fluid dynamic (CFD) simulations of the gasoline spray with different droplet breakup models were performed in the commercial CFD software STAR-CD and validated by the corresponding measurements. The injection pressure was fixed at 180 bar, while two different backpressures (1 and 10 bar) were used to evaluate the robustness of the breakup models. The effects of the mesh quality, simulation timestep, breakup model parameters were investigated to clarify the overall performance of different breakup model in modeling the gasoline sprays.
Book

Laser Diagnostics and Optical Measurement Techniques in Internal Combustion Engines

2012-07-30
The increasing concern about CO2 emissions and energy prices has led to new CO2 emission and fuel economy legislation being introduced in world regions served by the automotive industry. In response, automotive manufacturers and Tier-1 suppliers are developing a new generation of internal combustion (IC) engines with ultra-low emissions and high fuel efficiency. To further this development, a better understanding is needed of the combustion and pollutant formation processes in IC engines. As efficiency and emission abatement processes have reached points of diminishing returns, there is more of a need to make measurements inside the combustion chamber, where the combustion and pollutant formation processes take place. However, there is currently no good overview of how to make these measurements.
Technical Paper

Innovative Ultra-low NOx Controlled Auto-Ignition Combustion Process for Gasoline Engines: the 4-SPACE Project

2000-06-19
2000-01-1837
The purpose of the 4-SPACE (4-Stroke Powered gasoline Auto-ignition Controlled combustion Engine) industrial research project is to research and develop an innovative controlled auto-ignition combustion process for lean burn automotive gasoline 4-stroke engines application. The engine concepts to be developed could have the potential to replace the existing stoichiometric / 3-way catalyst automotive spark ignition 4-stroke engines by offering the potential to meet the most stringent EURO 4 emissions limits in the year 2005 without requiring DeNOx catalyst technology. A reduction of fuel consumption and therefore of corresponding CO2 emissions of 15 to 20% in average urban conditions of use, is expected for the « 4-SPACE » lean burn 4-stroke engine with additional reduction of CO emissions.
Technical Paper

Influence of Biodiesel Blending on Particulate Matter (PM) Oxidation Characteristics

2017-03-28
2017-01-0932
The use of diesel particulate filter [DPF] has become a standard in modern diesel engine after treatment technology. However pressure drop develops across the filter as PM accumulates and this requires quick periodic burn-out without incurring thermal runaway temperatures that could compromise DPF integrity during operation. Adequate understanding of soot oxidation is needed for design and manufacture of efficient filter traps for the engine system. In this study, we have examined the impact of blending biodiesel on oxidation of PM generated from a high speed direct injection [HSDI] diesel engine, which was operated with 20% [B20] and 40% [B40] blends of two biodiesel fuels. The PM samples were collected from the engine exhaust using a Pall Tissuquartz filter, the oxidation characteristics of the samples were carried out using thermogravimetric analyzer [TGA]. The biodiesel oxidation data obtained from pure petrodiesel was compared against the fuel blends.
Technical Paper

Experimental Study on Spark Assisted Compression Ignition (SACI) Combustion with Positive Valve Overlap in a HCCI Gasoline Engine

2012-04-16
2012-01-1126
The spark-assisted compression ignition (SACI) is widely used to expend the high load limit of homogeneous charge compression ignition (HCCI), as it can reduce the high heat release rate effectively while partially maintain the advantage of high thermal efficiency and low NOx emission. But as engine load increases, the SACI combustion traditionally using negative valve overlap strategy (NVO) faces the drawback of higher pumping loss and limited intake charge availability, which lead to a restricted load expansion and a finite improvement of fuel economy. In this paper, research is focused on the SACI combustion using positive valve overlap (PVO) strategy. The characteristics of SACI combustion employing PVO strategy with external exhaust gas recirculation (eEGR) are investigated. Two types of PVO strategies are analyzed and compared to explore their advantages and defects, and the rules of adjusting SACI combustion with positive valve overlap are concluded.
Technical Paper

Experimental Studies of a 4-Stroke Multi-Cylinder Gasoline Engine with Controlled Auto-Ignition (CAI) Combustion

2007-11-28
2007-01-2609
Controlled Auto-Ignition (CAI), also known as HCCI (Homogeneous Charge Compression Ignition), is increasingly seen as a very effective way of lowering both fuel consumption and emissions from gasoline engines. Therefore, it's seen as one of the best ways to meet future engine emissions and CO2 legislations. This combustion concept was achieved in a Ford production, port-injected, 4 cylinder gasoline engine. The only major modification to the original engine was the replacement of the original camshafts by a new set of custom made ones. The CAI operation was accomplished by means of using residual gas trapping made possible by the use of VCT (variable cam timing) on both intake and exhaust camshafts. When running on CAI, the engine was able to achieve CAI combustion with in a load range of 0.5 to 4.5 BMEP, and a speed range of 1000 to 3500 rpm. In addition, spark assisted CAI operation was employed to extend the operational range of low NOx and low pumping loss at part-load conditions.
Technical Paper

Experimental Investigation on DME Assisted Gasoline CAI/HCCI Combustion with Intake Re-Breathing Valve Strategy

2015-09-01
2015-01-1818
In order to investigate feasibility of DME (Di-methyl ether) assisted gasoline CAI (controlled-auto ignition) combustion, direct DME injection is employed to act as the ignition source to trigger the auto-ignition combustion of premixed gasoline/air mixture with high temperature exhaust gas. Intake re-breathing valve strategy is adopted to obtain internal exhaust recirculation (EGR) that regulates heat release rate and ignitability of the premixed gasoline and air mixture. The effects of intake re-breathing valve timing and 2nd DME injection timing of different split injection ratios were investigated and discussed in terms of combustion characteristics, emission and efficiencies. The analyses showed that re-breathing intake valve timing had a large effect on the operation range of CAI combustion due to EGR and intake temperature variation.
Technical Paper

Experimental Investigation of the Effects of Combined Hydrogen and Diesel Combustion on the Emissions of a HSDI Diesel Engine

2008-06-23
2008-01-1787
The effects of load, speed, exhaust gas recirculation (EGR) level and hydrogen addition level on the emissions from a diesel engine have been investigated. The experiments were performed on a 2.0 litre, 4 cylinder, direct injection engine with a high pressure common-rail injection system. Injection timing was varied between 14° BTDC and TDC and injection pressures were varied from 800 bar to 1400 bar to find a suitable base point. EGR levels were then varied from 0% to 40%. Hydrogen induction was varied between 0 and 6% vol. of the inlet charge. In the case of using hydrogen and EGR, the hydrogen replaced air. The load was varied from 0 to 5.4 bar BMEP at two engine speeds, 1500 rpm and 2500 rpm. For this investigation the carbon monoxide (CO), total unburnt hydrocarbons (THC), nitrogen oxides (NOx) and the filter smoke number (FSN) were all measured.
Technical Paper

Experimental Investigation of Combustion and Emission Characteristics of the Direct Injection Dimethyl Ether Enabled Micro-Flame Ignited (MFI) Hybrid Combustion in a 4-Stroke Gasoline Engine

2018-04-03
2018-01-1247
Controlled Auto-Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), has the potential to improve gasoline engines’ efficiency and simultaneously achieve ultra-low NOx emissions. Two of the primary obstacles for applying CAI combustion are the control of combustion phasing and the maximum heat release rate. To solve these problems, dimethyl ether (DME) was directly injected into the cylinder to generate multi-point micro-flame through compression in order to manage the entire heat release of gasoline in the cylinder through port fuel injection, which is known as micro-flame ignited (MFI) hybrid combustion.
Technical Paper

Experimental Investigation of Combustion and Emission Characteristics of Stoichiometric Stratified Flame Ignited (SFI) Hybrid Combustion in a 4-Stroke PFI/DI Gasoline Engine

2019-04-02
2019-01-0960
Controlled Auto-Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), can improve the fuel economy of gasoline engines and simultaneously achieve ultra-low NOx emissions. However, the difficulty in combustion phasing control and violent combustion at high loads limit the commercial application of CAI combustion. To overcome these problems, stratified mixture, which is rich around the central spark plug and lean around the cylinder wall, is formed through port fuel injection and direct injection of gasoline. In this condition, rich mixture is consumed by flame propagation after spark ignition, while the unburned lean mixture auto-ignites due to the increased in-cylinder temperature during flame propagation, i.e., stratified flame ignited (SFI) hybrid combustion.
Technical Paper

Effects of Mechanical Turbo Compounding on a Turbocharged Diesel Engine

2013-03-25
2013-01-0103
This paper presents the simulation study on the effects of mechanical turbo-compounding on a turbocharged diesel engine. A downstream power-turbine has been coupled to the exhaust manifold after the main turbocharger, in the aim to recover waste heat energy. The engine in the current study is Scania DC13-06, which 6 cylinders and 13 litre in capacity. The possibilities, effectiveness and working range of the turbo compounded system were analyzed in this study. The system was modeled in AVL BOOST, which is a one dimensional (1D) engine code. The current study found that turbo compounding could possibly recover on average 11.4% more exhaust energy or extra 3.7kW of power. If the system is mechanically coupled to the engine, it could increase the average engine power by up to 1.2% and improve average BSFC by 1.9%.
Technical Paper

Effects of Injection Timing and Valve Timings on CAI Operation in a Multi-Cylinder DI Gasoline Engine

2005-04-11
2005-01-0132
CAI-combustion was achieved in a 4-cylinder four-stroke gasoline DI engine, with all cylinders running in CAI-mode. Standard components were used, with the exception of the camshafts which had been modified in order to restrict the gas exchange process. Results shown in the paper are between a load of 1.45 - 2.65 bar, an engine speed of 1500rpm and at a lambda value of 1.2. As is typical with this type of combustion, reductions in emissions of NOx were recorded as well as a slight decrease in HC emissions, also there was a reduction in the brake specific fuel consumption. The effect that injection timing on factors such as start of combustion, combustion duration and heat release rate are also investigated.
Technical Paper

Effects of Ignition Timing on CAI Combustion in a Multi-Cylinder DI Gasoline Engine

2005-10-24
2005-01-3720
Having achieved CAI-combustion in a 4-cylinder four-stroke gasoline DI engine the effects of ignition timing on the CAI combustion process were investigated through the introduction of spark. By varying the start of fuel injection, the effects on Indicated Specific values for NOx, HC, CO emissions and fuel consumption were investigated for CAI combustion. The CAI combustion process was then assisted by spark and three different ignition timings were studied. The effect on engine performance and the emission specific values were investigated further. The engine speed was maintained at 1500 rpm and lambda was kept constant at 1.2. It was found that with spark-assisted CAI, IMEP and ISNOx values increased as compared with typical CAI. ISHC values were lower for spark-assisted CAI as compared to typical CAI. Heat release data was studied to better understand this phenomenon.
X