Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Thermal Design and Analysis of the Phoenix Mars Lander Meteorological Instrument

The Phoenix Mars Lander is scheduled to be launched in August 2007 and will land in the northern Vastitas Borealis region. The lander is equipped with a suite of instruments designed to investigate the mineralogy and geochemistry of the soil and to study the atmosphere. The Canadian Meteorological Instrument (MET) will measure the location and the extent of clouds and the distribution of scatterers in the atmosphere as well as measuring the air temperature and the barometric pressure. The MET will provide Canadian scientists with a unique opportunity to study the Martian atmosphere and enhance our understanding of the planet in key areas of Canadian expertise. The MET instrument is composed of multiple elements in order to fulfil the science objectives. The MET Light Imaging Detection and Ranging (LIDAR) will probe the atmosphere by sending out laser pulses and measuring the backscattered returns.
Technical Paper

Nanofluids as Working Media for Loop Heat Pipes

Nanofluids have been recently investigated as new working media for two-phase thermal control systems. However, conflicting reports have emerged, in which contradictory effects of the nanoparticles on the working performance of heat pipes have been described. Some studies have shown that gold or silver nanoparticles significantly improve heat transfer performances of heat pipes. Other studies have provided evidence that metal nanoparticles have no particular effect. This study is aimed at determining whether nanofluids are good candidates as heat carriers in a Loop Heat Pipe (LHP) system. Here, a nanofluid consisting of well-characterized citrate-stabilized gold nanoparticles in water is examined. The metallic nanoparticles are functionalized with citrate ligands in order to be soluble and stable in water at room temperature. An LHP hardware set-up was developed for this investigation.
Technical Paper

Advances in Two-Phase Loop with Capillary Pump Technology and Space Applications

Two-Phase Loops with Capillary Pump (Loop Heat Pipes (LHP) and Capillary Pumped Loops (CPL)) are currently among advanced thermal control technologies for aerospace applications. Large numbers of experimental and operational two-phase loops were successfully tested and used in several spacecraft in the past two decades. Novel technologies such as Advanced CPL-LHP, High Performance CPL, miniature LHPs, inversion (reversible, “Push-Pull") LHPs, ramified, multiple evaporator and condenser LHPs and CPLs, for complex thermal control systems are being proposed. This paper presents a state-of-the-art survey and analysis of these technologies. A classification of Two-Phase Loop with Capillary Pump designs is recommended. Basic principles, operational conditions and characteristics, temperature control and start-up initiation are discussed. The use of thermal control systems based on Two-Phase Loops with Capillary Pump for space applications is reviewed and summarized.
Technical Paper

A Laboratory Setup for Observation of Loop Heat Pipe Characteristics

Heat pipes, loop heat pipes and capillary pumped loops are heat transfer devices driven by capillary forces with high-effectiveness & performance, offering high-reliability & flexibility in varying g-environments. They are suitable for spacecraft thermal control where the mass, volume, and power budgets are very limited. The Canadian Space Agency is developing loop heat pipe hardware aimed at understanding the thermal performance of two-phase heat transfer devices and in developing numerical simulation techniques using thermo-hydraulic mathematical models, to enable development of novel thermal control technologies. This loop heat pipe consists of a cylindrical evaporator, compensation chamber, condenser along with vapor and liquid lines, which can be easily assembled/disassembled for test purposes. This laboratory setup is especially designed to enable the visualization of fluid flow and phase change phenomena.