Refine Your Search

Topic

Search Results

Technical Paper

Vehicle Interior Noise and Vibration Reduction Method Using Transfer Function of Body Structure

2011-05-17
2011-01-1692
To reduce interior noise effectively in the vehicle body structure development process, noise and vibration engineers have to first identify the portions of the body that have high sensitivity. Second, the necessary vibration characteristics of each portion must be determined, and third, the appropriate body structure for achieving the target performance of the vehicle must be realized within a short development timeframe. This paper proposes a new method based on the substructure synthesis method which is effective up to 200Hz. This method primarily utilizes equations expressing the relationship between driving point inertance change at arbitrary body portions and the corresponding sound pressure level (SPL) variation at the occupant's ear positions under external force. A modified system equation was derived from the body transfer functions and equation of motion by adding a virtual dynamic stiffness expression into the dynamic stiffness matrix of the vehicle.
Technical Paper

Toyota’s New Driveline for FR Passenger Vehicles

2017-03-28
2017-01-1130
The renewed platform of the upcoming flagship front-engine, rear-wheel drive (FR) vehicles demands high levels of driving performance, fuel efficiency and noise-vibration performance. The newly developed driveline system must balance these conflicting performance attributes by adopting new technologies. This article focuses on several technologies that were needed in order to meet the demand for noise-vibration performance and fuel efficiency. For noise-vibration performance, this article will focus on propeller shaft low frequency noise (booming noise). This noise level is determined by the propeller shaft’s excitation force and the sensitivity of differential mounting system. In regards to the propeller shaft’s excitation force, the contribution of the axial excitation force was clarified. This excitation force was decreased by adopting a double offset joint (DOJ) as the propeller shaft’s second joint and low stiffness rubber couplings as the first and third joints.
Technical Paper

Study of Vehicle-to-Vehicle Collision Performance Based on Balance of Front End Strength

2007-04-16
2007-01-1175
Compatibility in vehicles crashes has been studied worldwide in recent years. In cases where primary energy-absorbing structures such as front end members were bypassed in front-to-front collisions, energy-absorbing efficiency declined compared to cases when no such bypassing occurred. A bumper beam that connects the front end members in the transverse direction can help prevent bypassing of primary energy-absorbing structures. The strength balance between front end members and a bumper beam was studied in this paper. It was verified in front-to-front offset vehicle collision tests that crash energy can be efficiently absorbed by balancing the strength of the bumper beam with the compression strength of the front end members.
Technical Paper

Solar Module Laminated Constitution for Automobiles

2016-04-05
2016-01-0351
Replacing the metal car roof with conventional solar modules results in the increase of total car weight and change of center of mass, which is not preferable for car designing. Therefore, weight reduction is required for solar modules to be equipped on vehicles. Exchanging glass to plastic for the cover plate of solar module is one of the major approaches to reduce weight; however, load bearing property, impact resistance, thermal deformation, and weatherability become new challenges. In this paper a new solar module structure that weighs as light as conventional steel car roofs, resolving these challenges is proposed.
Technical Paper

Post PVC Sound Insulating Underbody coating

2002-03-04
2002-01-0293
Underbody coating is used to prevent chipping damage of the automobile underbody and wheel well. Multi-functional material that gives sound insulating properties is called sound insulating underbody coating. This paper describes the development of underbody coating material with powdered acrylic composition as an alternative to polyvinyl chloride resin. The new material also has better foaming properties. It is possible to ensure excellent sound insulating performance with thin film. This multi-functional underbody coating is the first application in the world with weight reduction and cost saving, and in a more environmentally acceptable manner.
Technical Paper

Material Consolidation for Automotive Interior and Exterior Parts through Development of a High Performance Material

1998-09-29
982410
Through a polymer design and precise morphology control, The Super Olefin Polymer, TSOP-1 and TSOP-5 were developed for the material consolidation of interior and exterior parts, respectively. Due to a good balance of TSOP performance, several conventional materials were consolidated into one material for each application. Accordingly, considerable amounts of weight reduction and cost savings have been obtained. In addition to the excellent recyclability of TSOP, the coated bumpers collected from the market were re-utilized through paint decomposition technology. The first dashboard construction, molded partially with foam-padded skin, was also realized. The current amount of TSOP used in a vehicle is about 30% of the total amount of plastic materials. Through the usage of TSOP, 70% of the material consolidation has been achieved.
Technical Paper

Low Frequency Airborne Panel Contribution Analysis and Vehicle Body Sensitivity to Exhaust Nnoise

2017-06-05
2017-01-1865
The tendency for car engines to reduce the cylinder number and increase the specific torque at low rpm has led to significantly higher levels of low frequency pulsation from the exhaust tailpipe. This is a challenge for exhaust system design, and equally for body design and vehicle integration. The low frequency panel noise contributions were identified using pressure transmissibility and operational sound pressure on the exterior. For this the body was divided into patches. For all patches the pressure transmissibility across the body panels into the interior was measured as well as the sound field over the entire surface of the vehicle body. The panel contributions, the pressure distribution and transmissibility distribution information were combined with acoustic modal analysis in the cabin, providing a better understanding of the airborne transfer.
Technical Paper

LED Headlamp Development for Mass Production

2008-04-14
2008-01-0339
To meet the market requirement for headlamps having lower power consumption, high photometric performance and long life whilst providing new styling opportunities, it has been anticipated that LED light sources would provide the necessary technological basis. Against this backdrop, Koito has succeeded in developing the necessary headlamp technologies and commercializing the world's first headlamp utilizing white LED's. The key point is that the various challenges associated with the development of an LED headlamp such as the commercial application of a synthesized light distribution, control of the light axis structure for the multi-lamp system, development of adequate thermal management for the cooling of the LED's and the achievement of volume production of the lamps have been successfully overcome.
Technical Paper

Joining Technologies for Aluminum Body-Improvement of Self-piercing Riveting

2003-10-27
2003-01-2788
The experimental research vehicle ES3 body was realized by using various aluminum-joining technologies: MIG welding, laser welding, self-piercing riveting. These technologies were applied selectively to make full use of their individual characteristics, according to the body structure and joined materials. Of these technologies, self-piercing riveting is advantageous in several respects. Aiming to expand the application range of riveting technology, we developed a die that prevents cracks in joining aluminum casting, and a method to improve rivet driving in thick, multi-pile portion. We further studied the feasibility of aluminum rivets. This paper outlines the ES3 body structure and it's joining technologies used and introduces the further improvements we developed concerning self-piercing riveting.
Technical Paper

Factors in Annoyance Due to Windshield Reflection of the Outline of the Head-up Display

2016-04-05
2016-01-1417
The use of a head-up display (HUD) system has become popular recently, as it can provide feedback information at a position easily seen by the driver. However, the outline of the HUD bezel often reflects on the windshield of a HUD equipped vehicle. This phenomenon occurs when the sun is at a high position and reflects off the top of the instrument panel and the front view is dark. For this reason, it can occur when driving on asphalt paved roads, causing annoyance to the driver. Under fixed environmental conditions, the vehicle based factors that influence the annoyance caused by reflected boundary lines are the position of the reflection, line thickness, and the contrast of the reflected boundary line. These can be represented by the conspicuity of a striped pattern (contrast sensitivity function). In previous research in 1991, M. S. Banks et al. studied a contrast sensitivity function that included the factors stated above.
Technical Paper

Evaluation of Wind Noise in Passenger Car Compartment in Consideration of Auditory Masking and Sound Localization

1999-03-01
1999-01-1125
This paper describes a new method for objective evaluation of wind noise in the passenger compartment of a car. The loudness and direction of noise in each frequency band can be estimated by performing analyses based on human hearing properties. Therefore, those wind noise components that are annoying to the passengers or those wind noise components whose source location can be determined by the human listener can be identified objectively. Furthermore, the total loudness of wind noise can be estimated quite precisely by adding the loudness of the frequency bands for noise emanating from the direction of the side window.
Technical Paper

Effects of Planar and Nonplanar Driver-Side Mirrors on Subjective Discomfort-Glare Responses Among Young and Old.

2004-03-08
2004-01-1092
In this study, we evaluated subjective nighttime discomfort-glare responds on three different types of planar and non-planar driver-side mirrors on two age groups. Fifty-six individuals (28 young [18-35 years] and 28 old [65 years and over]) participated in this experiment. Subjective discomfort-glare rating scores on three different types of driver-side mirrors were assessed utilizing De Boer's rating scale in a controlled nighttime driving environment (laboratory ambient illuminant level - l lux with headlight turned off). Three driver-side mirrors included: planar (“flat mirror” - reflectance ratio of 39.12%) and nonplanar (“curved mirror” - reflectance ratio of 8.78% and “blue mirror” - reflectance ratio of 7.77%; R=1400mm). The results indicated that with the same glare level (as measured by angle of incidence and illuminance on the front of the eyes), older adults reported lower De Boer's rating scores (i.e. worse feelings of glare) than their younger counterparts.
Technical Paper

Development of Thermoplastic CFRP for Stack Frame

2016-04-05
2016-01-0532
Weight reduction for a fuel cell vehicle (FCV) is important to contribute a long driving range. One approach to reduce vehicle weight involves using a carbon fiber reinforced plastic (CFRP) which has a high specific strength and stiffness. However, a conventional thermoset CFRP requires a long chemical reaction time and it is not easy to introduce into mass production vehicles. In this study, a new compression-moldable thermoplastic CFRP material for mass production body structural parts was developed and applied to the stack frame of the Toyota Mirai.
Technical Paper

Development of Robust Design Method in Pedestrian Impact Test

2007-04-16
2007-01-0881
This paper describes that a method has been developed to estimate the range of the scatter of Head Injury Criterion (HIC) values in pedestrian impact tests, which could help to reduce the range of the scatter of HIC values by applying the stochastic method for Finite Element (FE) analysis. A major advantage of this method is that it enables the range of scatter of HIC values to be estimated and to explain the mechanics of the behavior. The test procedure of pedestrian impact allows some tolerances for the resultant conditions of impact such that the distance of actual impact location from the selected point is within 10 mm and the impact velocity is within ±0.7 km/h [1]. A HIC value calculated by impact simulation under a deterministic impact condition with the nominal input data does not necessarily represent the variation of measured data in impactor tests.
Technical Paper

Development of Hall Effect Device Based Height Sensor

2005-04-11
2005-01-0459
We have developed a Hall effect device based height sensor of a smaller size, and with higher temperature operation durability, as compared to conventional devices. Downsizing of the sensor is realized by decreasing a number of parts, and by employing a short bearing. Improvement in heat resistance is achieved by adopting an IC with sufficient heat resistance and a SmCo magnet with high coercive force. In addition, a sensor of a high degree of accuracy is accomplished by improvements in linearity and robustness of magnetic characteristics. Development of a small, heat-resistant and accurate height sensor will promote the spread of systems using a height sensor, such as a High Intensity Discharge (HID) headlamp.
Technical Paper

Development and Application of an Enhanced SID-IIs Dummy for Analyzing Side Impact Kinematics

2009-04-20
2009-01-1432
Due to the relative high speed and short distance between the door and occupant, side impact presents a challenging task when analyzing the input force from the door to the occupant. The new FMVSS214 Final Rule in 2007 and the new NCAP in 2008 mandated the use of a SID-IIs in the oblique pole impact test and in the rear seat during an MDB side impact test. Therefore, a high-precision measurement and calculation of the three-dimensional dummy kinematics, as well as the interaction of force inside the dummy (internal force) and force exerted from outside the dummy (external force) will help provide efficient evaluation of design requirements for the door trim and supplemental restraint systems that meet legally mandated requirements.
Technical Paper

Application of Soap Film Geometry for Low Noise Floor Panels

1999-05-17
1999-01-1799
A method for applying soap film geometry to an automobile body structure has been developed. Its curved surface reduce both interior noise and damping material application because of its high rigidity and uneven deformation mode. This paper demonstrates these mechanism, benchmarks their performance with conventional flat and bead panels and presents an application to the floor panel of an automobile body.
Technical Paper

Analysis of Occupant Kinematics of Rollover Buck Test

2016-04-05
2016-01-1516
Approximately 20% of traffic fatalities in United States 2012 were caused by rollover accidents. Mostly injured parts were head, chest, backbone and arms. In order to clarify the injury mechanism of rollover accidents, kinematics of six kinds of Anthropomorphic Test Devices (ATD) and Post Mortem Human Subjects (PMHS) in the rolling compartment, whose body size is 50th percentile male (AM50), were researched by Zhang et al.(2014) using rollover buck testing system. It was clarified from the research that flexibility of the backbone and thoracic vertebra affected to occupant’s kinematics. On the other hand, the kinematics research of body size except AM50 will be needed in order to decrease traffic fatalities. There were few reports about the researches of occupant kinematics using FE models of body sizes except AM50.
Technical Paper

Analysis of FEM Results Based upon FOA

2004-03-08
2004-01-1729
In FOA (First Order Analysis) any vehicle body structure might be interpreted as a collective simple structure that can be decomposed into 3 fundamental structure types. The first structure is the “BEAM”, whose cross sectional properties as well as its material dominates the mechanical behavior, the second is the “PANEL (shear panel, plate, and shell)”, whose mechanical behavior can be varied by changing its geometrical properties in the thickness direction, i.e. adding beads or flanges. The third structure is the “JOINT”, which connects the proceeding structures, and transfer complex three-dimensional loads with three-dimensional deformation. In the present work, we shall propose a methodology to identify a portion of an arbitrary FE model of an automotive body structure, with a “BEAM” structure in the FOA approach. In the latter chapter of this paper, cross section loads will be related with cross sectional properties in the aspect of the element strain energy concept.
Technical Paper

A Study of Cervical Spine Kinematics and Joint Capsule Strain in Rear Impacts using a Human FE Model

2006-11-06
2006-22-0020
Many efforts have been made to understand the mechanism of whiplash injury. Recently, the cervical facet joint capsules have been focused on as a potential site of injury. An experimental approach has been taken to analyze the vertebral motion and to estimate joint capsule stretch that was thought to be a potential cause of pain. The purpose of this study is to analyze the kinematics of the cervical facet joint using a human FE model in order to better understand the injury mechanism. The Total Human Model for Safety (THUMS) was used to visually analyze the local and global kinematics of the spine. Soft tissues in the neck were newly modeled and introduced into THUMS for estimating the loading level in rear impacts. The model was first validated against human test data in the literature by comparing vertebrae motion as well as head and neck responses. Joint capsule strain was estimated from a maximum principal strain output from the elements representing the capsule tissues.
X