Refine Your Search



Search Results

Technical Paper

Vegetable Oil Hydrogenating Process for Automotive Fuel

From the viewpoint of primary energy diversification and CO2 reduction, interests of using Biomass Fuel are rising. Some kinds of FAME (Fatty Acid Methyl Ester), which are obtained from oil fats like vegetable oil using transesterification reaction with methanol, are getting Palm Oilpular for bio-diesel recently. In this study, we have conducted many experiments of palm oil hydrogenations using our pilot plants, and checked the reactivity and the pattern of product yields. As a result, we figured out that the hydrocarbon oil equivalent to the conventional diesel fuel can be obtained from vegetable oils in good yield under mild hydrogenation conditions. Moreover, as a result of various evaluations for the hydrogenated palm oil (oxidation stability, lowtemperature flow property, LCA, etc.), we found that the hydrogenated palm oil by our technology has performances almost equivalent to conventional diesel fuel.
Technical Paper

The Impact of RON on SI Engine Thermal Efficiency

Recently, global warming and energy security have received significant attention. Thus an improvement of the vehicle fuel economy is strongly required. For engines, one effective way is to improve the engine thermal efficiency. Raising compression ratio [1] or turbo charging technologies have potential to achieve high thermal efficiency. However knock does not allow the high thermal efficiency. Knock depends on the fuel composition and the pressure and temperature history of unburnt end-gas [2-3]. For fuels, RON is well known for describing the anti knock quality. High RON fuels have high anti knock quality and result in higher thermal efficiency. This paper investigates the impact of high RON fuels on the thermal efficiency by using high compression ratio engine, turbo charged engine, and lean boosted engine [4]. Finally, it is shown that the high thermal efficiency can be approached with high RON gasoline and ethanol.
Journal Article

The Impact of Diesel and Biodiesel Fuel Composition on a Euro V HSDI Engine with Advanced DPNR Emissions Control

In an effort to reduce CO2 emissions, governments are increasingly mandating the use of various levels of biofuels. While this is strongly supported in principle within the energy and transportation industries, the impact of these mandates on the transport stock’s CO2 emissions and overall operating efficiency has yet to be fully explored. This paper provides information on studies to assess biodiesel influences and effects on engine performance, driveability, emissions and fuel consumption on state-of-the-art Euro IV compliant Toyota Avensis D4-D vehicles with DPNR aftertreatment systems. Two fuel matrices (Phases 1 & 2) were designed to look at the impact of fuel composition on vehicle operation using a wide range of critical parameters such as cetane number, density, distillation and biofuel (FAME) level and type, which can be found within the current global range of Diesel fuel qualities.
Technical Paper

The Effect of Ethanol Fuel on a Spark Ignition Engine

Since ethanol is a renewable source of energy and it contributes to lower CO2 emissions, ethanol produced from biomass is expected to increase in use as an alternative fuel. It is recognized that for spark ignition (SI) engines ethanol has advantages of high octane number and high combustion speed and has a disadvantage of difficult startability at low temperature. This paper investigates the influence of ethanol fuel on SI engine performance, thermal efficiency, and emissions. The combustion characteristics under cold engine conditions are also examined. Ethanol has high anti-knock quality due to its high octane number, and high latent heat of evaporation, which decreases the compressed gas temperature during the compression stroke. In addition to the effect of latent heat of evaporation, the difference of combustion products compared with gasoline further decreases combustion temperature, thereby reducing cooling heat loss.
Journal Article

Study of Oxide Supports for PEFC Catalyst

Polymer electrolyte membrane fuel cell (PEFC) systems for fuel cell vehicles (FCVs) require both performance and durability. Carbon is the typical support material used for PEFC catalysts. However, hydrogen starvation at the anode causes high electrode potential states (e.g., 1.3 V with respect to the reversible hydrogen electrode) that result in severe carbon support corrosion. Serious damage to the carbon support due to hydrogen starvation can lead to irreversible performance loss in PEFC systems. To avoid such high electrode potentials, FCV PEFC systems often utilize cell voltage monitor systems (CVMs) that are expensive to use and install. Simplifying PEFC systems by removing these CVMs would help reduce costs, which is a vital part of popularizing FCVs. However, one precondition for removing CVMs is the adoption of a durable support material to replace carbon.
Technical Paper

Study of Mileage-Related Formaldehyde Emission from Methanol Fueled Vehicles

In order to determine the main factors causing the mileage-related increase in formaldehyde emission from methanol-fueled vehicles, mileage was accumulated on three types of vehicle, each of which had a different air-fuel calibration system. From exhaust emission data obtained during and after the mileage accumulation, it was found that lean burn operation resulted in by far the highest formaldehyde emission increase. An investigation into the reason for the rise in engine-out formaldehyde emission revealed that deposits in the combustion chamber emanating from the lubricating oil promotes formaldehyde formation. Furthermore it was learnt that an increase in engine-out NOx emissions promotes partial oxidation of unburned methanol in the catalyst, leading to a significant increase in catalyst-out formaldehyde emission.
Technical Paper

Oxidation Stability of Diesel/Biodiesel Blends: Impact of Fuels Physical-Chemical Properties over Ageing During Storage and Accelerated Oxidation

Current and future engine technologies and fuels are mutually dependent. The increased use of alternative fuels has been linked to deterioration in performance of injectors, fuel filters and engines as a result of insoluble deposit formation. The present work aimed to study the impact of Diesel/biodiesel blends formulation (biodiesel feedstock and content) and temperature on the oxidation stability based on total acid number (TAN). The biofuels used in the fuel matrix were: rapeseed, soy and palm methyl esters (RME, SME and PME respectively). The Diesel/biodiesel blends were made with 0%v/v, 5%v/v, 10% v/v and 20%v/v of biodiesel blended with additive-free new Diesel. The oxidation stability of Diesel/biodiesel blends was to evaluate during 6 months fuels storage, under 20°C and 40°C, and fuels severe oxidation into a reactor vessel to better understand the parameters leading to fuel oxidation on-board.
Technical Paper

Improvement of Adhesion Properties between Epoxy Resin and Primer and between Primer and Ni Plating in Hybrid Vehicle Power Semiconductor Module under High Temperature Conditions

In this report, adhesion mechanism between epoxy resin and primer and between primer and Ni platting in Hybrid vehicle (HV) was investigated. Adhesion forces are thought to be a combination of mechanical bond forces (such as anchor effect), chemical bond forces and physical bond forces (such as hydrogen bonding and Van der Waals force). Currently there is insufficient understanding of the adhesion mechanism. In particular, the extent to which the three bond forces contribute to adhesion strength. So the adhesion mechanism of polyimide primers was analyzed using a number of different methods, including transmission electron microscope (TEM) and atomic force microscope (AFM) observation, to determine the contributions of the three bonding forces. Molecular simulation was also used to investigate the relationship between adhesion strength and the molecular structure of the primer.
Technical Paper

Impact Study of High Biodiesel Blends on Performance of Exhaust Aftertreatment Systems

Biodiesel Fuel (BDF) Research Work Group works on identifying technological issues on the use of high biodiesel blends (over 5 mass%) in conventional diesel vehicles under the Japan Auto-Oil Program started in 2007. The Work Group conducts an analytical study on the issues to develop measures to be taken by fuel products and vehicle manufacturers, and to produce new technological findings that could contribute to the study of its introduction in Japan, including establishment of a national fuel quality standard covering high biodiesel blends. For evaluation of the impacts of high biodiesel blends on performance of diesel particulate filter system, a wide variety of biodiesel blendstocks were prepared, ranging from some kinds of fatty acid methyl esters (FAME) to another type of BDF such as hydrotreated biodiesel (HBD). Evaluation was mainly conducted on blend levels of 20% and 50%, but also conducted on 10% blends and neat FAME in some tests.
Technical Paper

Ignition Characteristics of Hydrogen Jets in an Argon-Oxygen Atmosphere

The ignition delay and combustion characteristics of hydrogen jets in an argon-oxygen atmosphere were investigated to provide fundamental data for operating an argon-circulated hydrogen internal combustion engine. Experiments were conducted in a constant-volume combustion vessel to study the effects of ambient temperature, ambient pressure, oxygen concentration and injection pressure on a pre-burning system. The hydrogen-jet penetration and flame were also investigated based on high-speed shadowgraph images. The experimental results indicated that the ignition delay (τ) increases as the ambient temperature (Ti) decreases, similar to the results obtained in an air atmosphere. The heat-release rate results also exhibited similar trends.
Journal Article

High-Efficiency and Low-NOx Hydrogen Combustion by High Pressure Direct Injection

Hydrogen can be produced from various renewable energy sources, therefore it is predicted that hydrogen could play a greater role in meeting society's energy needs in the mid- to long-term. Conventional hydrogen engines have some disadvantages: higher cooling loss results in low thermal efficiency and abnormal combustion (backfire, pre-ignition, higher burning velocity) limits high load operation. Direct injection is an effective solution to overcome these disadvantages, but combustion methods that enable both high efficiency and low NOx have yet to be studied in enough detail. In this research, high-efficiency and low-NOx hydrogen combustion was investigated using a prototype high-pressure hydrogen injector (maximum 30 MPa). Experiments were carried out with a 2.2-liter 4-cylinder diesel engine equipped with a centrally mounted hydrogen injector, a toroidal shape combustion chamber, and a spark plug in the glow plug position.
Technical Paper

High Concentration Ethanol Effect on SI Engine Cold Startability

From the energy security and CO2 discharge reduction point of view, much attention has been paid to the usage of biofuel, ethanol, as an alternative source of energy in the transportation industry. Yet, the major drawback in applying highly concentrated ethanol in the spark ignited internal combustion engines is cold start instability. This is due to the characteristics of ethanol, large latent heat required to vaporize. This paper investigates necessary conditions for the engine cold start, using highly concentrated ethanol. Tests performed with varieties of ethanol fuel, a relationship between cold startability lower temperature limit and reid vapor pressure was observed. A method to boost the vaporization, intake valve timing control is introduced to obtain high compression peak temperature.
Technical Paper

Hardfaced Valve and P/M Valve Seat System for CNG and LPG Fuel Engines

When adapted for use in automotive engines, CNG and LPG are considered environmentally friendly compared to gasoline or diesel fuel. However, when these gaseous fuels are used, wear of the valve seat insert and valve face increases if materials meant for use with gasoline are adopted. In comparison to a gasoline engine, the oxide membrane that is formed on the sliding surfaces of the valve face and valve seat insert is limited. As a consequence, adhesion occurs and increased wear of these components is the result. Based on analysis materials that are more compatible with these gaseous fuels were developed.
Technical Paper

GTL Fuel Impact on DI Diesel Emissions

Reduction of exhaust emissions was investigated in a modern diesel engine equipped with advanced diesel after treatment system using a Gas-to-Liquid (GTL) fuel, a cleaner burning alternative diesel fuel. This fuel has near zero sulfur and aromatics and high cetane number. Some specially prepared GTL fuel samples were used to study the effects of GTL fuel distillation characteristics on exhaust emissions before engine modification. Test results indicated that distillation range of GTL fuels has a significant impact on engine out PM. High cetane number also improved HC and CO emissions, while these fuel properties have little effect on NOx emissions. From these results, it was found that low distillation range and high cetane number GTL fuel can provide a favorable potential in NOx/PM emissions trade-off. In order to improve the tail-pipe emissions in the latest diesel engine system, the engine modifications were carried out for the most favorable GTL fuel sample.
Technical Paper

Feasibility Study of Exhaust Emissions in a Natural Gas Diesel Dual Fuel (DDF) Engine

The Diesel Dual Fuel (DDF) vehicle is one of the technologies to convert diesel vehicles for natural gas usage. The purpose of this research was to study the possibility of a DDF vehicle to meet emission standards for diesel vehicles. This research was done for small passenger vehicles and commercial vehicles. The exhaust emissions compliance of such vehicles in a New European Driving Cycle (NEDC) mode which was composed of Urban Driving Cycles (UDC) and an Extra Urban Driving Cycle (EUDC) was evaluated. (see APPENDIXFigure A1) In this study, the passenger vehicle engine, compliant with the EURO4 standard, was converted to a DDF engine. Engine bench tests under steady state conditions showed similar result to previous papers. Total hydrocarbon (HC) emission was extremely high, compared to diesel engine. The NEDC mode emissions of the DDF vehicle were estimated based on these engine bench test results.
Technical Paper

Feasibility Study of Ethanol Applications to A Direct Injection Gasoline Engine

Feasibility studies concerning ethanol utilization in direct injection gasoline engines were conducted in order to clarify the effects of ethanol on engine performance, exhaust emissions and injector deposit formation. The investigation results indicate that E100 (100% ethanol fuel) can improve full load engine performance around whole engine speed range in a high compression ratio engine (ε=13:1), compared to that of a base compression ratio engine (ε=11.5:1) operated on a premium gasoline. This was caused by the volumetric efficiency (ηv) improvement and engine knock suppression in the high compression ratio engine. On the other hand, HC emissions remarkably increased under lower engine speeds at a full load condition. This phenomenon suggests that poor combustion occurred due to insufficient mixing of air and E100 fuel under these conditions, in which the amount of ethanol injected was too large and fluidity in the cylinder was weak.
Technical Paper

Effects of RME30 on Exhaust Emissions and Combustion in a Diesel Engine

Considering the popularity of biodiesel fuels for diesel vehicles, the impacts of rapeseed oil methyl ester (RME), which is the most utilized biodiesel fuel in Europe, on tailpipe emissions from a diesel passenger car was investigated. In this study, 30% RME blended diesel fuel (RME30) was used and the comparison of tailpipe emissions between RME30 and a reference diesel fuel was conducted using a test vehicle with the latest engine and aftertreatment system. The results of the investigation reveal that RME30 generates about the same amount of NOx in tailpipe emissions as diesel fuel, and less HC, CO, and PM. These phenomena occurred in spite of attaching catalysts to the test vehicle, and therefore suggesting that the NOx conversion efficiency of the catalysts for RME30 is equal to that for diesel fuel. The injection rate for RME30 was the same as that for diesel fuel.
Technical Paper

Effects of GTL Fuel Properties on DI Diesel Combustion

Reduction of vehicle exhaust emissions is an important contributor to improved air quality. At the same time demand is growing for new transportation fuels that can enhance security and diversity of energy supply. Gas to Liquids (GTL) Fuel has generated much interest from governments and automotive manufacturers. It is a liquid fuel derived from natural gas, and its properties - sulphur free, low polyaromatics and high cetane number - make it desirable for future clean light-duty diesel engines. In this paper, the effects of distillation characteristics and cetane number of experimental GTL test fuels on direct injection (DI) diesel combustion and exhaust emissions were investigated, together with their spray behaviour and mixing characteristics. The test results show that the lower distillation test fuels produce the largest reductions in smoke and PM emissions even at high cetane numbers. This is linked to the enhanced air/fuel mixing of the lighter fuel in a shorter time.
Technical Paper

Effects of Bio-Fuels on Vehicle Performance: Degradation Mechanism Analysis of Bio-Fuels

In recent years, alternative sources of fuel are receiving a lot of attention in the automotive industry. Fuels derived from an agricultural feedstock are an attractive option. Bio-fuels based on vegetable oils offer the advantage being a sustainable, annually renewable source of automobile fuel. One of key issues in using vegetable oil based fuels is its oxidation stability. Since diesel fuels from fossil oil have good oxidation stability, automobile companies have not considered fuel degradation when developing diesel engines and vehicles as compared with gasoline engines. This paper presents the results of oxidation stability testing on bio-fuels. Oxidation stability was determined using three test methods, ASTM D525, EN14112 and ASTM D2274. The effects of storage condition, bio-fuel composition and antioxidants on the degradation of bio-fuels were all investigated. ASTM D525 is an effective test method to determine the effects of storage condition on bio-fuels stability.
Journal Article

Development of System Control for Rapid Warm-up Operation of Fuel Cell

Cold weather operation has been a major issue for fuel cell hybrid vehicles (FCHV). To counteract the effects of low temperatures on FCHV operation, an approach for rapid warm-up operation based on concentration overvoltage increase and conversion efficiency decrease by limiting oxygen or hydrogen supply was adopted. In order to suppress increases in exhaust hydrogen concentration due to pumping hydrogen during rapid warm-up, dilution control using bypass air and reduction of concentration overvoltage by a minimum voltage guard were implemented. These approaches effectively control waste heat generation and suppress exhaust hydrogen concentrations during cold start and warm-up. These developments were incorporated into the 2008 Toyota FCHV-adv and it was confirmed that the rapid warm-up operation strategy allowed the FCHV-adv to be successfully and repeatedly started at -30°C.