Refine Your Search

Topic

Author

Search Results

Technical Paper

World Fuels and Modern Fuel Systems - A Path to Coexistence

2015-09-29
2015-01-2818
All around the world, steps are being taken to improve the quality of our environment. Prominent among these are the definition, implementation, and attainment of increasingly stringent emissions regulations for all types of engines, including off-highway diesels. These rigorous regulations have driven use of technologies like after-treatment, advanced air systems, and advanced fuel systems. Fuel dispensed off-highway is routinely and significantly dirtier than fuel from on-highway outlets. Furthermore, fuels used in developing countries can be up to 30 times dirtier than the average fuels in North America. Poor fuel cleanliness, coupled with the higher pressures and performance demands of modern fuel systems, create life challenges greater than encountered with cleaner fuels. This can result in costly disruption of operations, loss of productivity, and customer dissatisfaction in the off-highway market.
Technical Paper

Thermal Optimization of the ECS on an Advanced Aircraft with an Emphasis on System Efficiency and Design Methodology

1997-06-18
971241
Two methods for analyzing and evaluating the environmental control system on an advanced aircraft as described in this paper include the conventional first law energy conservation technique and the second law entropy generation minimization technique. Simplified analytical models of the ECS are developed for each method and compared to determine the validity of using the latter to facilitate the design process in optimizing the overall system for a minimum gross takeoff weight (GTW). Preliminary results have illustrated the importance of taking into account system optimization based on system (or component) efficiency. For instance, even though different values were obtained for the rate of entropy generation, the second law analysis of a shell-in-tube heat exchanger led to an optimum tube diameter of 0.12 in (3.05 mm) when both R-12 and R-114 were used as the refrigerant in the vapor cycle.
Technical Paper

The Psychological and Statistical Design Method for Co-Creation HMI Applications in the Chinese Automotive Market

2017-03-28
2017-01-0650
The automotive industry is dramatically changing. Many automotive Original Equipment Manufacturers (OEMs) proposed new prototype models or concept vehicles to promote a green vehicle image. Non-traditional players bring many latest technologies in the Information Technology (IT) industry to the automotive industry. Typical vehicle’s characteristics became wider compared to those of vehicles a decade ago, and they include not only a driving range, mileage per gallon and acceleration rating, but also many features adopted in the IT industry, such as usability, connectivity, vehicle software upgrade capability and backward compatibility. Consumers expect the latest technology features in vehicles as they enjoy in using digital applications in laptops and mobile phones. These features create a huge challenge for a design of a new vehicle, especially for a human-machine-interface (HMI) system.
Technical Paper

The Impact of RoHS on Electric Vehicles in the Chinese Automotive Market

2016-09-27
2016-01-8124
China has become the world’s largest vehicle market in terms of sales volume. Automobiles sales keep growing in recent years despite the declining economic growth rate. Due to the increasing attention given to the environmental impact, more stringent emission regulations are being drafted to control traditional internal combustion engine emissions. In order to reduce vehicle emissions, environmentally-friendly new-energy vehicles, such as electric vehicles and plug-in hybrid vehicles, are being promoted by government policies. The Chinese government plans to boost sales of new-energy cars to account for about five percent of China’s total vehicle sales. It is well known that more electric and electronic components will be integrated into a vehicle platform during vehicle electrification.
Technical Paper

The Evolution of Electronic Engine Diagnostics

1990-10-01
901158
Software systems on electronically controlled diesel truck engines typically provide diagnostic features to enable the engine mechanic to identify and debug system problems. As future systems become more sophisticated, so will the diagnostic requirements. The advantages of serviceability and accuracy found in todays electronic systems must not be allowed to degrade due to this increased sophistication. One method of maintaining a high level of serviceability and accuracy is to place an even greater priority on diagnostics and servicing in the initial design phase of the product than is done today. In particular, three major goals of future diagnostic systems should be separation of component failures from system failures, prognostication of failures and analysis of engine performance. This paper will discuss a system to realize these goals by dividing the diagnostic task into the Electronic System Diagnostics, Engine System Diagnostics and the Diagnostic Interface.
Technical Paper

The Effects of Roll Control for Passenger Cars during Emergency Maneuvers

1994-03-01
940224
A nonlinear eight degree of freedom vehicle model has been used to examine the effects of roll stiffness on handling and performance. In addition, various control strategies have been devised which vary the total roll couple distribution in order to improve cornering capability and stopping distance. Of all cases tested, a controller which varies the total roll stiffness based on roll angle feedback, and continuously updates the roll couple distribution as a function of steering wheel angle, braking input, and the total roll stiffness, yields the greatest improvements in collision avoidance.
Technical Paper

The Effects of Chassis Flexibility on Roll Stiffness of a Winston Cup Race Car

1998-11-16
983051
Predictable handling of a racecar may be achieved by tailoring chassis stiffness so that roll stiffness between sprung and unsprung masses are due almost entirely to the suspension. In this work, the effects of overall chassis flexibility on roll stiffness and wheel camber response, will be determined using a finite element model (FEM) of a Winston Cup racecar chassis and suspension. The FEM of the chassis/suspension is built from an assembly of beam and shell elements using geometry measured from a typical Winston cup race configuration. Care has been taken to model internal constraints between degrees-of-freedom (DOF) at suspension to chassis connections, e.g. t ball and pin joints and internal releases. To validate the model, the change in wheel loads due to an applied jacking force that rolls the chassis agrees closely with measured data.
Technical Paper

The Effect of Mounting Structure Stiffness on Mounting System Isolation Performance on Off-Highway Machines

2015-06-15
2015-01-2350
Off-highway machine mounting system isolation, especially the cab mounting system, significantly affects the operator comfort by providing damping to the harsh inputs and isolating the structure-borne energy from traveling into the cab. Mounting system isolation performance is decided not only by the isolation component, but also the mounting bracket structure, and should be treated as a system. This paper gives a review of how the mounting system isolates structural energy and the effect of the bracket structure stiffness to the mounting system isolation performance.
Technical Paper

The Artificial Intelligence Application Strategy in Powertrain and Machine Control

2015-09-29
2015-01-2860
The application of Artificial Intelligence (AI) in the automotive industry can dramatically reshape the industry. In past decades, many Original Equipment Manufacturers (OEMs) applied neural network and pattern recognition technologies to powertrain calibration, emission prediction and virtual sensor development. The AI application is mostly focused on reducing product development and validation cost. AI technologies in these applications demonstrate certain cost-saving benefits, but are far from disruptive. A disruptive impact can be realized when AI applications finally bring cost-saving benefits directly to end users (e.g., automation of a vehicle or machine operation could dramatically improve the efficiency). However, there is still a gap between current technologies and those that can fully give a vehicle or machine intelligence, including reasoning, knowledge, planning and self-learning.
Technical Paper

Strategies for Developing Performance Standards for Alternative Hydraulic Fluids

2000-09-11
2000-01-2540
There has been an ongoing interest in replacing mineral oil with more biodegradable and/or fire-resistant hydraulic fluids in many mobile equipment applications. Although many alternative fluids may be more biodegradable, or fire-resistant, or both than mineral oil, they often suffer from other limitations such as poorer wear, oxidative stability, and yellow metal corrosion which inhibit their performance in high-pressure hydraulic systems, particularly high pressure piston pump applications. From the fluid supplier's viewpoint, the development of a definitive test, or series of tests, that provides sufficient information to determine how a given fluid would perform with various hydraulic components would be of interest because it would minimize extensive testing. This is often too slow or prohibitively expensive. Furthermore, from OEM's (original equipment manufacturer's) point of view, it would be advantageous to develop a more effective, industry accepted fluid analysis screening.
Technical Paper

Roll Stability Control for Torsionally Compliant Vehicles

2010-04-12
2010-01-0102
Rollover prevention is now part of complete vehicle stability control systems for many vehicles. Given that rollover is predominantly associated with vehicles with high centers of gravity, the targeted vehicles for rollover protection include medium and heavy duty commercial vehicles. Unfortunately, the chassis designs of these vehicles are often so compliant in torsion that the ends of the vehicles may have significantly different roll responses at any given time. The potential need to assess and correct for the roll behavior of the front and rear ends of the vehicle is the subject of this paper. Most rollover mitigation research to date has used rigid chassis assumptions in modeling the vehicle. This paper deals with the roll control of vehicles with torsionally flexible chassis based on a yaw-correction system.
Technical Paper

Results of Applying a Families-of-Systems Approach to Systems Engineering of Product Line Families

2002-11-18
2002-01-3086
Most of the history of systems engineering has been focused on processes for engineering a single complex system. However, most large enterprises design, manufacture, operate, sell, or support not one product but multiple product lines of related but varying systems. They seek to optimize time to market, costs of development and production, leverage of intellectual assets, best use of talented human resources, overall competitiveness, overall profitability and productivity. Optimizing globally across multiple product lines does not follow from treating each system family member as an independently engineered system or product. Traditional systems engineering principles can be generalized to apply to families. This article includes a multi-year case study of the actual use of a generic model-based systems engineering methodology for families, Systematica™, across the embedded electronic systems products of one of the world's largest manufacturers of heavy equipment.
Journal Article

Residual Stress Distributions in Rectangular Bars Due to High Rolling Loads

2016-04-05
2016-01-0424
In this paper, residual stress distributions in rectangular bars due to rolling or burnishing at very high rolling or burnishing loads are investigated by roll burnishing experiments and three-dimensional finite element analyses using ABAQUS. First, roll burnishing experiments on rectangular bars at two roller burnishing loads are presented. The results indicate the higher burnishing load induces lower residual stresses and the higher burnishing load does not improve fatigue lives. Next, in the corresponding finite element analyses, the roller is modeled as rigid and the roller rolls on the flat surface of the bar with a low coefficient of friction. The bar material is modeled as an elastic-plastic strain hardening material with a nonlinear kinematic hardening rule for loading and unloading.
Technical Paper

Process Control Standards for Technology Development

1998-04-08
981502
Engineering new technology and products challenges managers to balance design innovation and program risk. To do this, managers need methods to judge future results to avoid program and product disasters. Besides the traditional prediction tools of schedule, simulations and “iron tests”, process control standards (with measurements) can also be applied to the development programs to mitigate risks. This paper briefly discusses the theory and case history behind some new process control methods and standards currently in place at Caterpillar's Electrical & Electronics department. Process standards reviewed in this paper include process mapping, ISO9001, process controls, and process improvement models (e.g. SEI's CMMs.)
Technical Paper

Procedure for the Characterization of Friction in Automobile Power Steering Systems

1996-02-01
960933
In developing a nonlinear steering system model for vehicle simulation, it was determined that proper inclusion of system friction is necessary to correctly predict steering wheel torque response in on-center driving using simulation models. A method to characterize the inherent friction behavior for a given steering gear has been developed and performed on two types of power steering gears: a recirculating ball gear and a rack-and-pinion gear. During this research it was discovered that levels of static and dynamic friction can differ widely for these two types. Therefore this characterization procedure provides a method to ascertain both static and dynamic friction levels. The results from these tests show that friction levels can depend on steering gear input shaft position, steering gear input angular velocity and steering gear loading conditions.
Technical Paper

Linkage and Structural Optimization of an Earth Moving Machine

2010-04-12
2010-01-0496
Faced with competitive environments, pressure to lower development costs and aggressive timelines engineers are not only increasingly adopting numerical simulation techniques but are also embracing design optimization schemes to augment their efforts. These techniques not only provide more understanding of the trade-offs but are also capable of proactively guiding the decision making process. However, design optimization and exploration tools have struggled to find complete acceptance and are typically underutilized in many applications; especially in situations where the algorithms have to compete with existing swift decision making processes. In this paper we demonstrate how the type of setup and algorithmic choice can have an influence and make optimization more lucrative in a new product development atmosphere. We also present some results from a design exploration activity, involving linkage and structural development, of an earth moving machine application.
Technical Paper

Lean-NOx and Plasma Catalysis Over γ-Alumina for Heavy Duty Diesel Applications

2001-09-24
2001-01-3569
The NOx reduction performance under lean conditions over γ-alumina was evaluated using a micro-reactor system and a non-thermal plasma-equipped bench test system. Various alumina samples were obtained from alumina manufacturers to assess commercial alumina materials. In addition, γ-alumina samples were synthesized at Caterpillar with a sol-gel technique in order to control alumina properties. The deNOx performances of the alumina samples were compared. The alumina samples were characterized with analytical techniques such as inductively coupled plasma (ICP) emission spectroscopy, temperature programmed desorption (TPD) and surface area measurements (BET) to understand physical and chemical properties. The information derived from these techniques was correlated with the NOx reduction performance to identify key parameters of γ-alumina for optimizing materials for lean-NOx and plasma assisted catalysis.
Journal Article

Investigation of the Relative Performance of Vaned and Vaneless Mixed Flow Turbines for Medium and Heavy-Duty Diesel Engine Applications with Pulse Exhaust Systems

2021-04-06
2021-01-0644
This paper details results of a numerical and experimental investigation into the relative performance of vaned and vaneless mixed flow turbines for application to medium and heavy-duty diesel engines utilizing pulse exhaust systems. Previous investigations into the impact of nozzle vanes on turbine performance considered only open turbine housings, whereas a majority of medium and heavy-duty diesel engine applications are six-cylinder engines using pulse exhaust systems with divided turbines. The two turbine stages for this investigation were carefully designed to meet the constraints of engines with pulse exhaust systems and to control confounding factors that would undermine the vaned vs vaneless performance comparison. Detailed CFD analysis and turbine dynamometer test results confirm a significant efficiency advantage for the vaned turbine stage under both full and partial admission conditions.
Technical Paper

Investigation of the Machining of Titanium Components for Lightweight Vehicles

2010-04-12
2010-01-0022
Due to titanium's excellent strength-to-weight ratio and high corrosion resistance, titanium and its alloys have great potential to reduce energy usage in vehicles through a reduction in vehicle mass. The mass of a road vehicle is directly related to its energy consumption through inertial requirements and tire rolling resistance losses. However, when considering the manufacture of titanium automotive components, the machinability is poor, thus increasing processing cost through a trade-off between extended cycle time (labor cost) or increased tool wear (tooling cost). This fact has classified titanium as a “difficult-to-machine” material and consequently, titanium has been traditionally used for application areas having a comparatively higher end product cost such as in aerospace applications, the automotive racing segment, etc., as opposed to the consumer automotive segment.
Technical Paper

Initiating a Values Based Culture at Track-Type Tractors Division of Caterpillar Inc.

1999-03-01
1999-01-0250
During the early 1990s, the Track-Type Tractors Division (TTTD) of Caterpillar Inc. experienced several challenges. The Division faced increasing global competition in the midst of an economic recession. Although intense plant modernization and reorganization occurred in the five previous years, the business unit was not profitable. In 1993, Track-Type Tractors Division instituted its solution -- a change in its culture. Previously, the culture hindered the division’s ability to move forward. This was revealed in a 1992 review detailing the major obstacles inhibiting management from achieving divisional goals. The division leaders recognized that a change in business philosophy, as opposed to further plant modernization, was required to achieve production goals and stay globally competitive.
X