Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Journal Article

Valve Profile Adaptation, Stratification, Boosting and 2-Stroke Strategies for Raising Loads of Gasoline HCCI Engines

2012-04-16
2012-01-1108
The development of high efficiency powertrains is a key objective for car manufacturers. One approach for improving the efficiency of gasoline engines is based on homogeneous charge compression ignition, HCCI, which provides higher efficiency than conventional strategies. However, HCCI is only currently viable at relatively low loads, primarily because at high loads it involves rapid combustion that generates pressure oscillations in the cylinder (ringing), and partly because it gives rise to relatively high NOX emissions. This paper describes studies aimed at increasing the viability of HCCI combustion at higher loads by using fully flexible valve trains, direct injection with charge stratification (SCCI), and intake air boosting. These approaches were complemented by using EGR to control NOX emissions by stoichiometric operation, which enables the use of a three-way catalyst.
Technical Paper

The Full Cycle HD Diesel Engine Simulations Using KIVA-4 Code

2010-10-25
2010-01-2234
With the advent of the KIVA-4 code which employs an unstructured mesh to represent the engine geometry, the gap in flexibility between commercial and research modeling software becomes more narrow. In this study, we tried to perform a full cycle simulation of a 4-stroke HD diesel engine represented by a highly boosted research IF (Isotta Fraschini) engine using the KIVA-4 code. The engine mesh including the combustion chamber, intake and exhaust valves and helical manifolds was constructed using optional O-Grids catching a complex geometry of the engine parts with the help of the ANSYS ICEM CFD software. The KIVA-4 mesh input was obtained by a homemade mesh converter which can read STAR-CD and CFX outputs. The simulations were performed on a full 360 deg mesh consisting of 300,000 unstructured hexahedral cells at BDC. The physical properties of the liquid fuel were taken corresponding to those of real diesel #2 oil.
Technical Paper

Reduction of Energy Used for Vehicle Interior Climate

2016-04-05
2016-01-0250
In recent years fuel consumption of passenger vehicles has received increasing attention by customers, the automotive industry, regulatory agencies and academia. However, some areas which affect the fuel consumption have received relatively small interest. One of these areas is the total energy used for vehicle interior climate which can have a large effect on real-world fuel consumption. Realistic combinations of energy saving measures were evaluated regarding the total energy use for vehicle interior climate using a one dimensional (1D) simulation model. The 1D simulation model included sub models of the passenger compartment, the air-handling unit, the Air Conditioning (AC) system, engine and engine cooling system. A test cycle representative for real-world conditions was developed. The test cycle included tests in cold, intermediate and warm conditions and the results were weighted with the estimated use in each condition.
Technical Paper

Optimised Neat Ethanol Engine with Stratified Combustion at Part-load; Particle Emissions, Efficiency and Performance

2013-04-08
2013-01-0254
A regular flex-fuel engine can operate on any blend of fuel between pure gasoline and E85. Flex-fuel engines have relatively low efficiency on E85 because the hardware is optimized for gasoline. If instead the engine is optimized for neat ethanol, the efficiency may be much higher, as demonstrated in this paper. The studied two-liter engine was modified with a much higher compression ratio than suitable for gasoline, two-stage turbocharging and direct injection with piezo-actuated outwards-opening injectors, a stratified combustion system and custom in-house control system. The research engine exhibited a wide-open throttle performance similar to that of a naturally aspirated v8, while offering a part-load efficiency comparable to a state-of-the-art two-liter naturally aspirated engine. NOx will be handled by a lean NOx trap. Combustion characteristics were compared between gasoline and neat ethanol.
Technical Paper

Numerical Analysis of Combustion and Emissions Formation in a Heavy Duty DME Engine

2012-04-16
2012-01-0156
When using dimethyl ether (DME) to fuel diesel engines at high load and speed, applying high amounts of exhaust gas recirculation (EGR) to limit NOX emissions, carbon monoxide (CO) emissions are generally high. To address this issue, the combustion and emission processes in such engines were analyzed with the three-dimensional CFD KIVA3V code. The combustion sub-mechanism (76 species and 375 reactions) was validated by comparing simulated ignition delays and flame velocities to reference data under diesel-like and atmospheric conditions, respectively. In addition, simulated and experimentally determined rate of heat release (RoHR) curves and emission data were compared for a heavy-duty single-cylinder DME engine (displaced volume, 2.02 liters) with DME-adapted piston and nozzle geometries. The simulated RoHR curves captured the main features of the experimentally measured curves, but deviated in the premixed (higher peak) and late combustion phases (too high).
Journal Article

Force Based Measurement Method for Cooling Flow Quantification

2017-03-28
2017-01-1520
Quantification of heat exchanger performance in its operative environment is in many engineering applications an essential task, and the air flow rate through the heat exchanger core is an important optimizing parameter. This paper explores an alternative method for quantifying the air flow rate through compact heat exchangers positioned in the underhood of a passenger car. Unlike conventional methods, typically relying on measurements of direct flow characteristics at discrete probe locations, the proposed method is based on the use of load-cells for direct measurement of the total force acting on the heat exchanger. The air flow rate is then calculated from the force measurement. A direct comparison with a conventional pressure based method is presented as both methods are applied on a passenger car’s radiator tested in a full scale wind tunnel using six different grill configurations. The measured air flow rates are presented and discussed over a wide range of test velocities.
Journal Article

Experimental Investigation of Heat Transfer Rate and Pressure Drop through Angled Compact Heat Exchangers Relative to the Incoming Airflow

2014-09-30
2014-01-2337
This paper presents pressure drops and heat transfer rates for compact heat exchangers, where the heat exchangers are angled 90°, 60°, 30° and 10° relative to the incoming airflow. The investigation is based on three heat exchangers with thicknesses of 19mm and 52mm. Each heat exchanger was mounted in a duct, where it was tested for thermal and isothermal conditions. The inlet temperature of the coolant was defined to two temperatures; ambient temperature and 90°C. For the ambient cases the coolant had the same temperature as the surrounding air, these tests were performed for five airflow rates. When the coolant had a temperature of 90°C a combination of five coolant flow rates and five airflow rates were tested. The test set-up was defined as having a constant cross-section area for 90°, 60° and 30° angles, resulting in a larger core area and a lower airspeed through the core, for a more inclined heat exchanger.
Technical Paper

Comparison of Working Fluids in Both Subcritical and Supercritical Rankine Cycles for Waste-Heat Recovery Systems in Heavy-Duty Vehicles

2012-04-16
2012-01-1200
In a modern internal combustion engine, most of the fuel energy is dissipated as heat, mainly in the form of hot exhaust gas. A high temperature is required to allow conversion of the engine-out emissions in the catalytic system, but the temperature is usually still high downstream of the exhaust gas aftertreatment system. One way to recover some of this residual heat is to implement a Rankine cycle, which is connected to the exhaust system via a heat exchanger. The relatively low weight increase due to the additional components does not cause a significant fuel penalty, particularly for heavy-duty vehicles. The efficiency of a waste-heat recovery system such as a Rankine cycle depends on the efficiencies of the individual components and the choice of a suitable working fluid for the given boundary conditions.
Technical Paper

Combustion Optimization of a Marine DI Diesel Engine

2013-09-08
2013-24-0020
Enhanced calibration strategies and innovative engine combustion technologies are required to meet the new limits on exhaust gas emissions enforced in the field of marine propulsion and on-board energy production. The goal of the paper is to optimize the control parameters of a 4.2 dm3 unit displacement marine DI Diesel engine, in order to enhance the efficiency of the combustion system and reduce engine out emissions. The investigation is carried out by means of experimental tests and CFD simulations. For a better control of the testing conditions, the experimental activity is performed on a single cylinder prototype, while the engine test bench is specifically designed to simulate different levels of boosting. The numerical investigations are carried out using a set of different CFD tools: GT-Power for the engine cycle analysis, STAR-CD for the study of the in-cylinder flow, and a customized version of the KIVA-3V code for combustion.
Journal Article

CFD Analyses on 2-Stroke High Speed Diesel Engines

2011-09-11
2011-24-0016
In recent years, interest has been growing in the 2-Stroke Diesel cycle, coupled to high speed engines. One of the most promising applications is on light aircraft piston engines, typically designed to provide a top brake power of 100-200 HP with a relatively low weight. The main advantage yielded by the 2-Stroke cycle is the possibility to achieve high power density at low crankshaft speed, allowing the propeller to be directly coupled to the engine, without a reduction drive. Furthermore, Diesel combustion is a good match for supercharging and it is expected to provide a superior fuel efficiency, in comparison to S.I. engines. However, the coupling of 2-Stroke cycle and Diesel combustion on small bore, high speed engines is quite complex, requiring a suitable support from CFD simulation.
Journal Article

An Experimental Study on the Use of Butanol or Octanol Blends in a Heavy Duty Diesel Engine

2015-09-06
2015-24-2491
Global warming driven by “greenhouse gas” emissions is an increasingly serious concern of both the public and legislators. A potentially potent way to reduce these emissions and conserve fossil fuel resources is to use n-butanol, iso-butanol or octanol (2-ethylhexanol) from renewable sources as alternative fuels in diesel engines. The effects of adding these substances to diesel fuel were therefore tested in a single-cylinder heavy duty diesel engine operated using factory settings. These alcohols have better calorific values, flash points, lubricity, cetane numbers and solubility in diesel than shorter-chain alcohols. However, they have lower cetane numbers than diesel, so either hydrotreated vegetable oil (HVO) or Di-tertiary-butyl peroxide (DTBP) was added to the diesel-alcohol mixtures to generate blends with the same Cetane Number (CN) as diesel.
Journal Article

Aerodynamic Effects of Different Tire Models on a Sedan Type Passenger Car

2012-04-16
2012-01-0169
Targets for reducing emissions and improving energy efficiency present the automotive industry with many challenges. Passenger cars are by far the most common means of personal transport in the developed part of the world, and energy consumption related to personal transportation is predicted to increase significantly in the coming decades. Improved aerodynamic performance of passenger cars will be one of many important areas which will occupy engineers and researchers for the foreseeable future. The significance of wheels and wheel housings is well known today, but the relative importance of the different components has still not been fully investigated. A number of investigations highlighting the importance of proper ground simulation have been published, and recently a number of studies on improved aerodynamic design of the wheel have been presented as well. This study is an investigation of aerodynamic influences of different tires.
Technical Paper

3D CFD Modeling of a Biodiesel-Fueled Diesel Engine Based on a Detailed Chemical Mechanism

2012-04-16
2012-01-0151
A detailed reaction mechanism for the combustion of biodiesel fuels has recently been developed by Westbrook and co-workers. This detailed mechanism involves 5037 species and 19990 reactions, which prohibits its direct use in computational fluid dynamic (CFD) applications. In the present work, various mechanism reduction methods included in the Reaction Workbench software were used to derive a semi-detailed biodiesel combustion mechanism, while maintaining the accuracy of the master mechanism for a desired set of engine conditions. The reduced combustion mechanism for a five-component biodiesel fuel was employed in the FORTÉ CFD simulation package to take advantage of advanced chemistry solver methodologies and advanced spray models. Simulations were performed for a Volvo D12C heavy diesel engine fueled by RME fuel using a 72° sector mesh. Predictions were validated against measured in-cylinder parameters and exhaust emission concentrations.
X