Refine Your Search

Topic

Author

Search Results

Technical Paper

Water Injection System Application in a Mild Hybrid Powertrain

2020-04-14
2020-01-0798
The potential of 48V Mild Hybrid is promising in meeting the present and future CO2 legislations. There are various system layouts for 48V hybrid system including P0, P1, P2. In this paper, P2 architecture is used to investigate the effects of water injection benefits in a mild hybrid system. Electrification of the conventional powertrain uses the benefits of an electric drive in the low load-low speed region where the conventional SI engine is least efficient and as the load demand increases the IC Engine is used in its more efficient operating region. Engine downsizing and forced induction trend is popular in the hybrid system architecture. However, the engine efficiency is limited by combustion knocking at higher loads thus ignition retard is used to avoid knocking and fuel enrichment becomes must to operate the engine at MBT (Maximum Brake Torque) timing; in turn neutralizing the benefits of fuel savings by electrification.
Journal Article

Water Injection Benefits in a 3-Cylinder Downsized SI-Engine

2019-01-15
2019-01-0034
With progressing electrification of automotive powertrains and demands to meet increasingly stringent emission regulations, a combination of an electric motor and downsized turbocharged spark-ignited engine has been recognized as a viable solution. The SI engine must be optimized, and preferentially downsized, to reduce tailpipe CO2 and other emissions. However, drives to increase BMEP (Brake Mean Effective Pressure) and compression ratio/thermal efficiency increase propensities of knocking (auto-ignition of residual unburnt charge before the propagating flame reaches it) in downsized engines. Currently, knock is mitigated by retarding the ignition timing, but this has several limitations. Another option identified in the last decade (following trials of similar technology in aircraft combustion engines) is water injection, which suppresses knocking largely by reducing local in-cylinder mixture temperatures due to its latent heat of vaporization.
Journal Article

Visualization of Pre-Chamber Combustion and Main Chamber Jets with a Narrow Throat Pre-Chamber

2022-03-29
2022-01-0475
Pre-chamber combustion (PCC) has re-emerged in recent last years as a potential solution to help to decarbonize the transport sector with its improved engine efficiency as well as providing lower emissions. Research into the combustion process inside the pre-chamber is still a challenge due to the high pressure and temperatures, the geometrical restrictions, and the short combustion durations. Some fundamental studies in constant volume combustion chambers (CVCC) at low and medium working pressures have shown the complexity of the process and the influence of high pressures on the turbulence levels. In this study, the pre-chamber combustion process was investigated by combustion visualization in an optically-accessible pre-chamber under engine relevant conditions and linked with the jet emergence inside the main chamber. The pre-chamber geometry has a narrow-throat. The total nozzle area is distributed in two six-hole rows of nozzle holes.
Technical Paper

Visualization of EGR Influence on Diesel Combustion With Long Ignition Delay in a Heavy-duty Engine

2004-10-25
2004-01-2947
The effects of EGR on diesel combustion were visually examined in a single-cylinder heavy duty research engine with a low compression ratio, low swirl, a CR fuel injection system and an eight-orifice nozzle. Optical access was primarily obtained through the cylinder head. The effects of EGR were found to be significant. NOx emissions were reduced from over 500 ppm at 0% EGR to 5 ppm at 55% EGR. At higher levels of EGR (approximately 35% or more) there was a loss in efficiency. Constant fuel masses were injected. Results from the optical measurements and global emission data were compared in order to obtain a better understanding of the spray behaviour and mixing process. Optical measurements provide fundamental insights by visualizing air motion and combustion behaviour. The NOx reductions observed might be explained by reductions in oxygen concentration associated with the increases in EGR.
Technical Paper

Using Multi-Rate Filter Banks to Detect Internal Combustion Engine Knock

1997-05-01
971670
The wavelet transform is used in the analysis of the cylinder pressure trace and the ionic current trace of a knocking, single-cylinder, spark ignition engine. Using the wavelet transform offers a significant reduction of mathematical operations when compared with traditional filtering techniques based on the Fourier transform. It is shown that conventional knock analysis in terms of average energy in the time domain (AETD), corresponding to the signal's energy content, and maximum amplitude in the time domain (MATD), corresponding to the maximum amplitude of the bandpass filtered signal, can be applied to both the reconstructed filtered cylinder pressure and the wavelet coefficients. The use of the filter coefficients makes possible a significant additional reduction in calculation effort in comparison with filters based on the windowed Fourier transform.
Technical Paper

Turbulent Flame Speed Closure Model: Further Development and Implementation for 3-D Simulation of Combustion in SI Engine

1998-10-19
982613
A Turbulent Flame Speed Closure Model is modified and implemented into the FIRE code for use in 3D computations of combustion in an SI-engine. The modifications are done to account for mixture inhomogeneity, and mixture compression through the dependency of local equivalence ratio, pressure and temperature on the chemical time scale and a global reaction time scale. The model is also subjected to further evaluation against experimental data, covering different mixture and turbulence conditions. The combustion process in a 4-valve pentroof combustion chamber is simulated and heat release rates and spatial flame distribution are evaluated against experimental data. The computations show good agreement with the experiments. The model has proven to be a robust and time effective simulation tool with good predictive ability.
Journal Article

Time and Spatially Resolved Temperature Measurements of a Combusting Diesel Spray Impinging on a Wall

2008-06-23
2008-01-1608
The interaction between a combusting diesel spray and a wall was studied by measuring the spray flame temperature time and spatially resolved. The influence of injection sequences, injection pressure and gas conditions on the heat transfer between the combusting spray and the wall was investigated by measuring the flame temperature during the complete injection event. The flame temperature was measured by an emission based optical method and determined by comparing the relative emission intensities from the soot in the flame at two wavelength intervals. The measurements were done by employing a monochromatic and non intensified high speed camera, an array of mirrors, interference filters and a beam splitter. The studies were carried out in the Chalmers High Pressure High Temperature (HP/HT) spray rig at conditions similar to those prevailing in a direct injected diesel engine prior to the injection of fuel.
Technical Paper

Thermodynamic Cycle and Working Fluid Selection for Waste Heat Recovery in a Heavy Duty Diesel Engine

2018-04-03
2018-01-1371
Thermodynamic power cycles have been shown to provide an excellent method for waste heat recovery (WHR) in internal combustion engines. By capturing and reusing heat that would otherwise be lost to the environment, the efficiency of engines can be increased. This study evaluates the maximum power output of different cycles used for WHR in a heavy duty Diesel engine with a focus on working fluid selection. Typically, only high temperature heat sources are evaluated for WHR in engines, whereas this study also considers the potential of WHR from the coolant. To recover the heat, four types of power cycles were evaluated: the organic Rankine cycle (ORC), transcritical Rankine cycle, trilateral flash cycle, and organic flash cycle. This paper allows for a direct comparison of these cycles by simulating all cycles using the same boundary conditions and working fluids.
Technical Paper

The Effects of Multirow Nozzles on Diesel Combustion

2003-03-03
2003-01-0701
In a diesel engine, the combustion and emissions formation are governed by the spray formation and mixing processes. To meet the stringent emission legislations of the future, which will demand substantial reductions of NOX and particulate emissions from diesel engines, the spray and mixing processes play a major roll. Different fuel injection systems and injection strategies have been developed to achieve better performance and lower emissions from the diesel engine almost without investigating the influence of the injector nozzle orifices. A reduction in the nozzle orifice diameter is important for an increased mixing rate and formation of smaller droplets which is beneficial from emissions and fuel consumption point of view, as long as the local air-to-fuel ratio (AFR) is kept at a sufficiently lean level.
Technical Paper

The Effect of Knock on the Heat Transfer in an SI Engine: Thermal Boundary Layer Investigation using CARS Temperature Measurements and Heat Flux Measurements

2000-10-16
2000-01-2831
It is generally accepted that knocking combustion influences the heat transfer in SI engines. However, the effects of heat transfer on the onset of knock is still not clear due to lack of experimental data of the thermal boundary layer close to the combustion chamber wall. This paper presents measurements of the temperature in the thermal boundary layer under knocking and non-knocking conditions. The temperature was measured using dual-broadband rotational Coherent anti-Stokes Raman Spectroscopy (CARS). Simultaneous time-resolved measurements of the cylinder pressure, at three different locations, and the heat flux to the wall were carried out. Optical access to the region near the combustion chamber wall was achieved by using a horseshoe-shaped combustion chamber with windows installed in the rectangular part of the chamber. This arrangement made CARS temperature measurements close to the wall possible and results are presented in the range 0.1-5 mm from the wall.
Technical Paper

The Effect of Knock on Heat Transfer in SI Engines

2002-03-04
2002-01-0238
Heat transfer to the walls of the combustion chamber is increased by engine knock. In this study the influence of knock onset and knock intensity on the heat flux is investigated by examining over 10 000 individual engine cycles with a varying degree of knock. The heat transfer to the walls was estimated by measuring the combustion chamber wall temperature in an SI engine under knocking conditions. The influence of the air-fuel ratio and the orientation of the oscillating cylinder pressure-relative to the combustion chamber wall-were also investigated. It was found that knock intensities above 0.2 Mpa influenced the heat flux. At knock intensities above 0.6 Mpa, the peak heat flux was 2.5 times higher than for a non-knocking cycle. The direction of the oscillations did not affect the heat transfer.
Technical Paper

Temperature Oscillations in the Wall of a Cooled Multi Pulsejet Propeller for Aeronautic Propulsion

2016-09-20
2016-01-1998
Environmental and economic issues related to the aeronautic transport, with particular reference to the high-speed one are opening new perspectives to pulsejets and derived pulse detonation engines. Their importance relates to high thrust to weight ratio and low cost of manufacturing with very low energy efficiency. This papers presents a preliminary evaluation in the direction of a new family of pulsejets which can be coupled with both an air compression system which is currently in pre-patenting study and a more efficient and enduring valve systems with respect to today ones. This new pulsejet has bee specifically studied to reach three objectives: a better thermodynamic efficiency, a substantial reduction of vibrations by a multi-chamber cooled architecture, a much longer operative life by more affordable valves. Another objective of this research connects directly to the possibility of feeding the pulsejet with hydrogen.
Technical Paper

Sources of Hydrocarbon Emissions from a Direct Injection Stratified Charge Spark Ignition Engine

2000-06-19
2000-01-1906
The purpose of this paper is to assess the influence of fuel properties on cycle-resolved exhaust hydrocarbons and investigate the sources of hydrocarbon (HC) emissions in a direct injection stratified charge (DISC) SI engine. The tested engine is a single cylinder version of a commercial DISC engine that uses a wall guided combustion system. The HC emissions were analyzed using both a fast flame ionization detector (Fast FID) and conventional emission measurement equipment. Three fuels were compared in the study: iso-Pentane, iso-Octane and a gasoline of Japanese specification. The measurements were conducted at part-load, where the combustion is in stratified mode. The start of injection (SOI) was altered in relation to the series calibration to vary the mixture preparation time, the time from SOI to ignition. The ignition timing was set at maximum brake torque (MBT) for each test.
Technical Paper

Soot Sources in Warm-Up Conditions in a GDI Engine

2021-04-06
2021-01-0622
Gasoline direct injection (GDI) engines usually emit higher levels of particulates in warm-up conditions of a driving cycle. Thus, sources of soot formation in these conditions were investigated by measuring particulate numbers (PN) emitted from a single-cylinder GDI engine and their sizes. The combustion was also visualized using an endoscope connected to a high-speed camera. Engine coolant and oil temperatures were varied between 15 and 90oC to mimic warm-up conditions. In addition, effects of delaying the start of ignition (SOI) on the emissions in these conditions were examined. Coolant and oil temperatures were varied individually to identify which factor has most effect on PN emissions. While coolant temperature strongly influenced PN with cold oil, the oil temperature insignificantly affected PN at low coolant temperature. These findings indicate that PN emissions are heavily dependent on the engine block’s temperature, which is dominated by the coolant.
Technical Paper

Soot Source Term Tabulation Strategy for Diesel Engine Simulations with SRM

2015-09-06
2015-24-2400
In this work a soot source term tabulation strategy for soot predictions under Diesel engine conditions within the zero-dimensional Direct Injection Stochastic Reactor Model (DI-SRM) framework is presented. The DI-SRM accounts for detailed chemistry, in-homogeneities in the combustion chamber and turbulence-chemistry interactions. The existing implementation [1] was extended with a framework facilitating the use of tabulated soot source terms. The implementation allows now for using soot source terms provided by an online chemistry calculation, and for the use of a pre-calculated flamelet soot source term library. Diesel engine calculations were performed using the same detailed kinetic soot model in both configurations. The chemical mechanism for n-heptane used in this work is taken from Zeuch et al. [2] and consists of 121 species and 973 reactions including PAH and thermal NO chemistry. The engine case presented in [1] is used also for this work.
Technical Paper

Simulation of a Two-Stroke Free Piston Engine

2004-06-08
2004-01-1871
The free piston internal combustion engine used in conjunction with a linear alternator offers an interesting choice for use in hybrid vehicles. The linear motion of the pistons is directly converted to electricity by the alternator, and the result is a compact and efficient energy converter that has only one moving part. The movement of the pistons is not prescribed by a crank mechanism, but is the result of the equilibrium of forces acting on the pistons, and the engine will act like a mass-spring system. This feature is one of the most prominent advantages of the FPE (Free Piston Engine), as the lack of mechanical linkage gives means of varying the compression ratio in simple manners, without changing the hardware of the engine. By varying the compression ratio, it is also it possible to run on a multitude of different fuels and to use HCCI (Homogeneous Charge Compression Ignition) combustion.
Technical Paper

Simplifications Applied to Simulation of Turbulence Induced by a Side View Mirror of a Full-Scale Truck Using DES

2018-04-03
2018-01-0708
In this paper, the turbulent flow induced by a production side-view mirror assembled on a full-scale production truck is simulated using a compressible k-ω SST detached eddy simulation (DES) approach -- the improved delayed DES (IDDES). The truck configuration consists of a compartment and a trailer. Due to the large size and geometric complexity of the configuration, some simplifications are applied to the simulation. A purpose of this work is to investigate whether the simplifications are suitable to obtain the reasonable properties of the flow near the side-view mirror. Another objective is to study the aerodynamic performances of the mirror. The configuration is simplified regarding two treatments. The first treatment is to retain the key exterior components of the truck body while removing the small gaps and structures. Furthermore, the trailer is shaped in an apex-truncated square pyramid.
Technical Paper

Role of Late Soot Oxidation for Low Emission Combustion in a Diffusion-controlled, High-EGR, Heavy Duty Diesel Engine

2009-11-02
2009-01-2813
Soot formation and oxidation are complex and competing processes during diesel combustion. The balance between the two processes and their history determines engine-out soot values. Besides the efforts to lower soot formation with measures to influence the flame lift-off distance for example or to use HCCI-combustion, enhancement of late soot oxidation is of equal importance for low-λ diffusion-controlled low emissions combustion with EGR. The purpose of this study is to investigate soot oxidation in a heavy duty diesel engine by statistical analysis of engine data and in-cylinder endoscopic high speed photography together with CFD simulations with a main focus on large scale in-cylinder gas motion. Results from CFD simulations using a detailed soot model were used to reveal details about the soot oxidation.
Journal Article

Reduction of Soot Formation in an Optical Single-Cylinder Gasoline Direct-Injected Engine Operated in Stratified Mode Using 350 Bar Fuel Injection Pressure, Dual-Coil and High-Frequency Ignition Systems

2017-03-14
2017-01-9278
The current trend toward more fuel efficient vehicles with lower emission levels has prompted development of new combustion techniques for use in gasoline engines. Stratified combustion has been shown to be a promising approach for increasing the fuel efficiency. However, this technique is hampered by drawbacks such as increased particulate and standard emissions. This study attempts to address the issues of increased emission levels by investigating the influence of high frequency ionizing ignition systems, 350 bar fuel injection pressure and various tumble levels on particulate emissions and combustion characteristics in an optical SGDI engine operated in stratified mode on isooctane. Tests were performed at one engine load of 2.63 bar BMEP and speed of 1200 rpm. Combustion was recorded with two high speed color cameras from bottom and side views using optical filters for OH and soot luminescence.
Technical Paper

Rear-End Collisions - A Study of the Influence of Backrest Properties on Head-Neck Motion using a New Dummy Neck

1993-03-01
930343
Neck injuries in rear-end collisions are usually caused by a swift extension-flexion motion of the neck and mostly occur at low impact velocities (typically less than 20 km/h). Although the injuries are classified as AIS 1, they often lead to permanent disability. The injury risk varies a great deal between different car models. Epidemiological studies show that the effectiveness of passenger-car head-restraints in rear-end collisions generally remains poor. Rear-end collisions were simulated on a crash-sled by means of a Hybrid III dummy with a new neck (Rear Impact Dummy-neck). Seats were chosen from production car models. Differences in head-neck kinematics and kinetics between the different seats were observed at velocity changes of 5 and 12.5 km/h. Comparisons were made with an unmodified Hybrid III. The results show that the head-neck motion is influenced by the stiffness and elasticity of the backrest as well as by the properties of the head-restraint.
X