Refine Your Search

Topic

Author

Search Results

Technical Paper

Water Injection System Application in a Mild Hybrid Powertrain

2020-04-14
2020-01-0798
The potential of 48V Mild Hybrid is promising in meeting the present and future CO2 legislations. There are various system layouts for 48V hybrid system including P0, P1, P2. In this paper, P2 architecture is used to investigate the effects of water injection benefits in a mild hybrid system. Electrification of the conventional powertrain uses the benefits of an electric drive in the low load-low speed region where the conventional SI engine is least efficient and as the load demand increases the IC Engine is used in its more efficient operating region. Engine downsizing and forced induction trend is popular in the hybrid system architecture. However, the engine efficiency is limited by combustion knocking at higher loads thus ignition retard is used to avoid knocking and fuel enrichment becomes must to operate the engine at MBT (Maximum Brake Torque) timing; in turn neutralizing the benefits of fuel savings by electrification.
Technical Paper

Two Dimensional Measurements of Soot Size and Concentration in Diesel Flames by Laser Based Optical Methods

2022-03-29
2022-01-0416
Soot particle size, particle concentration and volume fraction were measured by laser based methods in optically dense, highly turbulent combusting diesel sprays under engine-like conditions. Experiments were done in the Chalmers High Pressure, High Temperature spray rig under isobaric conditions and combusting commercial diesel fuel. Laser Induced Incandescence (LII), Elastic Scattering and Light Extinction were combined quasi-simultaneously to quantify particle characteristics spatially resolved in the middle plane of a combusting spray at two instants after the start of combustion. The influence that fuel injection pressure, gas temperature and gas pressure exert on particle size, particle concentration and volume fraction were studied. Probability density functions of particle size and two-dimensional images of particle diameter, particle concentration and volume fraction concerning instantaneous single-shot cases and average measurements are presented.
Technical Paper

Toward an Effective Virtual Powertrain Calibration System

2018-04-03
2018-01-0007
Due to stricter emission regulations and more environmental awareness, the powertrain systems are moving toward higher fuel efficiency and lower emissions. In response to these pressing needs, new technologies have been designed and implemented by manufacturers. As a result of increasing complexity of the powertrain systems, their control and optimization become more and more challenging. Virtual powertrain calibration, also known as model-based calibration, has been introduced to transfer a part of test bench testing into a virtual environment, and hence considerably reduce time and cost of product development process while increasing the product quality. Nevertheless, virtual calibration has not yet reached its full potential in industrial applications. Volvo Penta has recently developed a virtual test cell named VIRTEC, which is used in an ongoing pilot project to meet the Stage V emission standards.
Technical Paper

Testing and Evaluation of Ignition Improvers for Ethanol in a DI Diesel Engine

1995-10-01
952512
The ignition delay of ethanol with different nitrate and polyethylene glycol based ignition improvers was investigated in a single-cylinder DI Diesel engine. The nitrate-based improvers provided a shorter ignition delay than the polyethylene glycol improvers, but the results indicate that the efficiency of the polyethylene glycol improvers increases with the length of the molecular chains. Comparison with reference fuels gives a cetane number of approximately 44 for ethanol with 4% of the best nitrate-based improver versus 40 for ethanol with 7% polyethylene glycol improver. It is shown, that the random ignition delay for all the fuels has a normal distribution, and that the reference fuel of every measurement series has a constant expected ignition delay. Ignition delay measurements in a constant-volume combustion vessel failed to produce the same trends as in the engine for the ethanol fuels.
Technical Paper

Supervisory Controller for a Light Duty Diesel Engine with an LNT-SCR After-Treatment System

2018-09-10
2018-01-1767
Look ahead information can be used to improve the powertrain’s fuel consumption while efficiently controlling exhaust emissions. A passenger car propelled by a Euro 6d capable diesel engine is studied. In the conventional approach, the diesel powertrain subsystem control is rule based. It uses no information of future load requests but is operated with the objective of low engine out exhaust emission species until the Exhaust After-Treatment System (EATS) light off has occurred, even if fuel economy is compromised greatly. Upon EATS light off, the engine is operated more fuel efficiently since the EATS system is able to treat emissions effectively. This paper presents a supervisory control structure with the intended purpose to operate the complete powertrain using a minimum of fuel while improving the robustness of exhaust emissions.
Technical Paper

Spray Combustion Simulation Based on Detailed Chemistry Approach for Diesel Fuel Surrogate Model

2003-05-19
2003-01-1848
To reproduce the Diesel fuel structural effect on soot formation, the diesel oil surrogate chemical model has been developed, validated using constant volume and applied to 3-D engine calculations using the KIVA-3V code. To better predict soot production, the presence of toluene, A1CH3, which is a product of benzene alkylation, in the reaction mechanism of n-heptane oxidation has been assumed. Soot formation as a solid phase has been simulated via a finite-rate transition of the gaseous precursor of soot, A2R5, to graphite. The final mechanism consists of 68 species and 278 reactions. Reasonable agreement of predictions with constant volume experimental data, on ignition delay times, flame appearance, accumulated amount of soot produced and soot cloud evolution has been achieved. Then, the fuel surrogate model has been applied to 3-D simulation (on a sectored mesh) of the Volvo NED5 DI Diesel engine.
Technical Paper

Soot Source Term Tabulation Strategy for Diesel Engine Simulations with SRM

2015-09-06
2015-24-2400
In this work a soot source term tabulation strategy for soot predictions under Diesel engine conditions within the zero-dimensional Direct Injection Stochastic Reactor Model (DI-SRM) framework is presented. The DI-SRM accounts for detailed chemistry, in-homogeneities in the combustion chamber and turbulence-chemistry interactions. The existing implementation [1] was extended with a framework facilitating the use of tabulated soot source terms. The implementation allows now for using soot source terms provided by an online chemistry calculation, and for the use of a pre-calculated flamelet soot source term library. Diesel engine calculations were performed using the same detailed kinetic soot model in both configurations. The chemical mechanism for n-heptane used in this work is taken from Zeuch et al. [2] and consists of 121 species and 973 reactions including PAH and thermal NO chemistry. The engine case presented in [1] is used also for this work.
Technical Paper

Simulation of a Two-Stroke Free Piston Engine

2004-06-08
2004-01-1871
The free piston internal combustion engine used in conjunction with a linear alternator offers an interesting choice for use in hybrid vehicles. The linear motion of the pistons is directly converted to electricity by the alternator, and the result is a compact and efficient energy converter that has only one moving part. The movement of the pistons is not prescribed by a crank mechanism, but is the result of the equilibrium of forces acting on the pistons, and the engine will act like a mass-spring system. This feature is one of the most prominent advantages of the FPE (Free Piston Engine), as the lack of mechanical linkage gives means of varying the compression ratio in simple manners, without changing the hardware of the engine. By varying the compression ratio, it is also it possible to run on a multitude of different fuels and to use HCCI (Homogeneous Charge Compression Ignition) combustion.
Journal Article

Reduction of Soot Formation in an Optical Single-Cylinder Gasoline Direct-Injected Engine Operated in Stratified Mode Using 350 Bar Fuel Injection Pressure, Dual-Coil and High-Frequency Ignition Systems

2017-03-14
2017-01-9278
The current trend toward more fuel efficient vehicles with lower emission levels has prompted development of new combustion techniques for use in gasoline engines. Stratified combustion has been shown to be a promising approach for increasing the fuel efficiency. However, this technique is hampered by drawbacks such as increased particulate and standard emissions. This study attempts to address the issues of increased emission levels by investigating the influence of high frequency ionizing ignition systems, 350 bar fuel injection pressure and various tumble levels on particulate emissions and combustion characteristics in an optical SGDI engine operated in stratified mode on isooctane. Tests were performed at one engine load of 2.63 bar BMEP and speed of 1200 rpm. Combustion was recorded with two high speed color cameras from bottom and side views using optical filters for OH and soot luminescence.
Technical Paper

Reduction of Soot Emissions from a Direct Injection Diesel Engine using Water-in-Diesel Emulsion and Microemulsion Fuels

2007-04-16
2007-01-1076
The emissions from a direct injection diesel engine measured according to the ECE R49 13-mode cycle and as a function of exhaust gas recirculation are compared for diesel fuel without water addition, and for water-in-diesel as emulsion and microemulsion. The effect of water addition on the soot emissions was remarkably strong for both the emulsion and microemulsion fuels. The average weighted soot emission values for the 13-mode cycle were 0.0024 and 0.0023 g/kWh for the two most interesting emulsion and microemulsion fuels tested, respectively; 5-fold lower than the US 2007 emission limit.
Technical Paper

Reducing Pressure Fluctuations at High Loads by Means of Charge Stratification in HCCI Combustion with Negative Valve Overlap

2009-06-15
2009-01-1785
Future demands for improvements in the fuel economy of gasoline passenger car engines will require the development and implementation of advanced combustion strategies, to replace, or combine with the conventional spark ignition strategy. One possible strategy is homogeneous charge compression ignition (HCCI) achieved using negative valve overlap (NVO). However, several issues need to be addressed before this combustion strategy can be fully implemented in a production vehicle, one being to increase the upper load limit. One constraint at high loads is the combustion becoming too rapid, leading to excessive pressure-rise rates and large pressure fluctuations (ringing), causing noise. In this work, efforts were made to reduce these pressure fluctuations by using a late injection during the later part of the compression. A more appropriate acronym than HCCI for such combustion is SCCI (Stratified Charge Compression Ignition).
Technical Paper

PHEV Energy Management: A Comparison of Two Levels of Trip Information

2012-04-16
2012-01-0745
Plug-in hybrid electric vehicles (PHEVs) have rechargeable energy storage which can be used to run the vehicle on shorter range on electricity from the grid. In the absence of a priori information about the trip, a straightforward strategy is to first deplete the battery down to a minimum level and then keep the state of charge (SoC) around this level. However, largely due to the battery losses, the overall fuel economy can be improved if the battery is discharged gradually. This requires some a priori knowledge about the trip. This paper investigates the tradeoff between improved fuel economy and the need for a priori information. This investigation is done using a variant of telemetry equivalent consumption minimization strategy (T-ECMS) which is modified to be used for a PHEV. To implement this strategy, several parameters need to be tuned based on an assumption of the future trip.
Technical Paper

Optical Studies of Spray Development and Combustion Characterization of Oxygenated and Fischer-Tropsch Fuels

2008-04-14
2008-01-1393
Optical studies of combusting diesel sprays were done on three different alternative liquid fuels and compared to Swedish environmental class 1 diesel fuel (MK1). The alternative fuels were Rapeseed Oil Methyl Ester (RME), Palm Oil Methyl Ester (PME) and Fischer-Tropsch (FT) fuel. The studies were carried out in the Chalmers High Pressure High Temperature spray rig under conditions similar to those prevailing in a direct-injected diesel engine prior to injection. High speed shadowgraphs were acquired to measure the penetration of the continuous liquid phase, droplets and ligaments, and vapor penetration. Flame temperatures and relative soot concentrations were measured by emission based, line-of-sight, optical methods. A comparison between previous engine tests and spray rig experiments was conducted in order to provide a deeper explanation of the combustion phenomena in the engine tests.
Technical Paper

Optical Diagnostics of Spray Characteristics and Soot Volume Fractions of n-Butanol, n-Octanol, Diesel, and Hydrotreated Vegetable Oil Blends in a Constant Volume Combustion Chamber

2019-01-15
2019-01-0019
The effects of using n-butanol, n-octanol, fossil Diesel, hydrotreated vegetable oil (HVO), and blends of these fuels on spray penetration, flame and soot characteristics were investigated in a high-pressure high-temperature constant volume combustion chamber designed to mimic a heavy duty Diesel engine. Backlight illumination was used to capture liquid and vapor phase spray images with a high-speed camera. The flame lift-off length (LOL) and ignition delay were determined by analyzing OH* chemiluminescence images. Laser extinction diagnostics were used to measure the spatially and temporally resolved soot volume fraction. The spray experiments were performed by injecting fuels under non-combusting (623 K) and combusting (823 K) conditions at a fixed ambient air density of 26 kg/m3. A Scania 0.19 mm single straight hole injector and Scania XPI common rail fuel supply system were used to produce injection pressures of 120 MPa and 180 MPa.
Technical Paper

OH Radical and Soot Concentration Structures in Diesel Sprays under Low Sooting and Non-Sooting Conditions

2018-09-10
2018-01-1690
In an optically accessible high-pressure/high-temperature (HP/HT) chamber, OH radicals, soot concentration, and OH* chemiluminescence images were captured simultaneously at a constant ambient temperature of 823 K and a gas density of 20 kg/m3, with injection pressures of 800-2000 bar using an injector with nozzle orifice having a diameter of 0.1 mm. Swedish market sold MK1 diesel fuel was used in this study. The optical diagnostic methods used were the two-dimensional laser extinction for the soot concentration measurement, planar laser induced fluorescence for the OH radical measurement, OH* chemiluminescence imaging, and the natural flame luminosity imaging. The objective of this study is to explore the diesel spray structures under the low sooting and non-sooting conditions. In this study, it was found that the OH radical zone in the jet’s upstream region expanded to the jet center and the soot concentration decreased when the fuel injection pressure increased.
Technical Paper

Numerical and Experimental Analysis of the Wall Film Thickness for Diesel Fuel Sprays Impinging on a Temperature-Controlled Wall

2007-04-16
2007-01-0486
Analysis of spray-wall interaction is a major issue in the study of the combustion process in DI diesel engines. Along with spray characteristics, the investigation of impinging sprays and of liquid wall film development is fundamental for predicting the mixture formation. Simulations of these phenomena for diesel sprays need to be validated and improved; nevertheless they can extend and complement experimental measurements. In this paper the wall film thickness for impinging sprays was investigated by evaluating the heat transfer across a temperature controlled wall. In fact, heat transfer is significantly affected by the wall film thickness, and both experiments and simulations were carried out to correlate the wall temperature variations and film height. The numerical simulations were carried out using the STAR-CD and the KIVA-3V, rel. 2, codes.
Technical Paper

Neat Dimethyl Ether: Is It Really Diesel Fuel of Promise?

1998-10-19
982537
The CFD model, based on the LANL KIVA-3 computer code, modified to account for the multi-step dimethyl ether, DME/air, oxidation chemistry, was developed and used to study the neat DME combustion dynamics in a constant volume at Diesel-like conditions and in the Volvo AH10A245DI Diesel engine. Constant volume simulations confirm high ignition quality of neat DME in air. The results of engine modeling illustrate that the injection schedule used for Diesel fuel is not optimal for DME. Surprisingly, the positive gain and peak pressure levels comparable with those for Diesel fuel were obtained using an early (∼ -20 ATDC) injection through a nozzle of a larger diameter at reduced injection pressures and velocities (∼150m/s) preventing too rapid spray atomization. At these conditions, combustion heat release has a specific two-stage character with a peak value placed behind the TDC.
Technical Paper

Modification of a Diesel Oil Surrogate Model for 3D CFD Simulation of Conventional and HCCI Combustion

2008-10-06
2008-01-2410
This paper describes an analysis of the Diesel Oil Surrogate (DOS) model used at Chalmers University (Sweden), including 70 species participating in 310 reactions, and subsequent improvements prompted by the model's systematic tendency to under-predict the combustion intensity in simulations of kinetically-driven combustion modes, e.g. Homogeneous Charged Compression Ignition (HCCI). Key bases of the model are the properties of a model Diesel fuel with the molecular formula C14H28. In the vapor phase, a global reaction decomposes the starting fuel, C14H28, into its constituent components; n-heptane (C7H16) and toluene (C7H8). This global reaction was modified to yield a higher n-heptane:toluene ratio, due to the importance of preserving an n-heptane-like cetane number.
Technical Paper

Modelling Gasoline Spray-wall Interaction -a Review of Current Models

2000-10-16
2000-01-2808
A literature survey was carried out to examine the advances in knowledge regarding spray impingement on surfaces over the last five years. Published experiments indicate that spray impingement is controlled by various spray parameters, surface conditions, and liquid properties. One disadvantage of the published results is that the experiments have mainly been conducted with water droplets or diesel fuel, often at atmospheric conditions. A sensitivity analysis was performed for one common impingement model. The purpose was to investigate how the model described different phenomena when different parameters were changed, including wall temperature, wall roughness and injection velocity of the spray. The model tested showed sensitivity to surface roughness, whereas changes in wall temperature only resulted in increased evaporation from the surface. The increase of injection velocity resulted in a decrease of fuel on the wall by 70%.
Technical Paper

Large-Scale CFD Approach for Spray Combustion Modelling in Compression-Ignited Engines

2005-09-11
2005-24-052
Computational simulations of the spray combustion and emissions formation processes in a heavy-duty DI diesel engine and in a small-bore DI diesel engine with a complicated injection schedule were performed by using the modified KIVA3V, rel. 2 code. Some initial parameter sets varying engine operating conditions, such as injection pressure, injector nozzle diameter, EGR load, were examined in order to evaluate their effects on the engine performance. Full-scale combustion chamber representations on 360-deg, Cartesian and polar, multiblock meshes with a different number of sprays have been used in the modelling unlike the conventional approach based on polar sector meshes covering the region around one fuel spray. The spray combustion phenomena were simulated using the detailed chemical mechanism for diesel fuel surrogate (69 species and 306 reactions).
X