Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Shuttle Induced Neutron Environment: Computational Requirements and Validation

2002-07-15
2002-01-2460
Most of the neutrons seen in the habitable environment of spacecraft in LEO are produced in local materials of the spacecraft structures by the impact of the LEO radiation environment. There are two components of the neutron spectra: one produced near the forward direction and a diffuse isotropic component. The forward component satisfies a Volterra equation and is solved by standard marching procedures. The diffuse component is generally of lower energy and nearly isotropically scattered as they diffuse through the spacecraft structures. Leakage at near boundaries marks the diffusion process and solutions are strongly dependent on forward and backward boundaries with minor contributions from lateral diffusion along spacecraft wall structures. The diffuse neutron equation is solved using multigroup methods with impressed forward and backward boundary conditions.
Technical Paper

Neutron Environment Calculations for Low Earth Orbit

2001-07-09
2001-01-2327
The long term exposure of astronauts on the developing International Space Station (ISS) requires an accurate knowledge of the internal exposure environment for human risk assessment and other onboard processes. The natural environment is moderated by the solar wind, which varies over the solar cycle. The HZETRN high charge and energy transport code developed at NASA Langley Research Center can be used to evaluate the neutron environment on ISS. A time dependent model for the ambient environment in low earth orbit is used. This model includes GCR radiation moderated by the Earth’s magnetic field, trapped protons, and a recently completed model of the albedo neutron environment formed through the interaction of galactic cosmic rays with the Earth’s atmosphere. Using this code, the neutron environments for space shuttle missions were calculated and comparisons were made to measurements by the Johnson Space Center with onboard detectors.
Technical Paper

Comparison of Numerical Solution Techniques for Calculating Low Energy Neutrons

2007-07-09
2007-01-3117
In this paper we investigate three numerical techniques for solving the one-dimensional straight-ahead Boltzmann equation for calculating the flux of low energy neutrons produced within a shielding material. The one-dimensional Boltzmann equation is split into a forward and backward coupled system of equations representing the production of ions of various types within a shielding material. The three numerical methods are then compared with neutron data from the Mir and ISS space station as well as Monte Carlo simulations for the production of low energy neutrons.
X