Refine Your Search

Topic

Author

Search Results

Technical Paper

Ultralight Fabric Reflux Tube (UFRT) Thermal/Vacuum Test

1996-07-01
961455
Spacecraft thermal control systems are essential to provide the necessary thermal environment for the crew and to ensure that the equipment functions adequately on space missions. The Ultralight Fabric Reflux Tube (UFRT) was developed by the Pacific Northwest National Laboratory as a lightweight radiator concept to be used on planetary surface-type missions (e.g., Moon, Mars). The UFRT consists of a thin-walled tube (acting as the fluid boundary), overwrapped with a low-mass ceramic fabric (acting as the primary pressure boundary). The tubes are placed in an array in the vertical position with the evaporators at the lower end. Heat is added to the evaporators, which vaporizes the working fluid. The vapor travels to the condenser end section and condenses on the inner wall of the thin-walled tube. The resulting latent heat is radiated to the environment. The fluid condensed on the tube wall is then returned to the evaporator by gravity.
Technical Paper

The State of ISS ATCS Design, Assembly and Operation

2003-07-07
2003-01-2513
The International Space Station (ISS) Active Thermal Control System (ATCS) (Ref. 1,2) has changed over the past several years to address problems and to improve its assembly and operation on-orbit. This paper captures the ways in which the Internal (I) ATCS and External (E) ATCS have changed design characteristics and operations both for the system currently operating on-orbit and the new elements of the system that are about to be added and/or activated. The rationale for changes in ATCS design, assembly and operation will provide insights into the lessons learned during ATCS development. The state of the assembly of the integrated ATCS will be presented to provide a status of the build-up of the system. The capabilities of the on-orbit system will be presented with a summary of the elements of the ISS ATCS that are functional on-orbit plus the plans for launch of remaining parts of the integrated ISS ATCS.
Technical Paper

Testing and Model Correlation of Sublimator Driven Coldplate Coupons and EDU

2009-07-12
2009-01-2479
The Sublimator Driven Coldplate (SDC) is a unique piece of thermal control hardware that has several advantages over a more traditional thermal control system. The principal advantage is the possible elimination of a pumped fluid loop, potentially saving mass, power, and complexity. Because this concept relies on evaporative heat rejection techniques, it is primarily useful for short mission durations. Additionally, the concept requires a conductive path between the heat-generating component and the heat rejection device. Therefore, it is mostly a relevant solution for a vehicle with a relatively low heat rejection requirement and/or short transport distances. Tests were performed on coupons and an Engineering Development Unit (EDU) at NASA's Johnson Space Center to better understand the basic operational principles and to validate the analytical methods being used for the SDC development.
Technical Paper

Testing and Analysis of an Environmental System Test Stand

2003-07-07
2003-01-2361
Thermal control systems for space application plant growth chambers offer unique challenges. The ability to control temperature and humidity independently gives greater flexibility for optimizing plant growth. Desired temperature and relative humidity range vary widely from 15°C to 35°C and 65% to 85% respectively. On top of all of these variables, the thermal control system must also be conservative in power and mass. These requirements to develop and test a robust thermal control system for space applications led to the design and development of the Environmental System Test Stand (ESTS) at NASA Johnson Space Center (JSC). The ESTS was designed to be a size constrained, environmental control system test stand with the flexibility to allow for a variety of thermal and lighting technologies. To give greater understanding to the environmental control system, the development of the ESTS included both mathematical models and the physical test stand.
Technical Paper

System Engineering and Integration of Controls for Advanced Life Support

2006-07-17
2006-01-2121
The Advanced Integration Matrix (AIM) project at the Johnson Space Center (JSC) was chartered to study and solve systems-level integration issues for exploration missions. One of the first issues identified was an inability to conduct trade studies on control system architectures due to the absence of mature evaluation criteria. Such architectures are necessary to enable integration of regenerative life support systems. A team was formed to address issues concerning software and hardware architectures and system controls.. The team has investigated what is required to integrate controls for the types of non-linear dynamic systems encountered in advanced life support. To this end, a water processing bioreactor testbed is being developed which will enable prototyping and testing of integration strategies and technologies.
Technical Paper

Simulation Study of Space Suit Thermal Control

2000-07-10
2000-01-2391
Automatic thermal comfort control for the minimum consumables PLSS is undertaken using several control approaches. Accuracy and performance of the strategies using feedforward, feedback, and gain scheduling are evaluated through simulation, highlighting their advantages and limitations. Implementation issues, consumable usage, and the provision for the extension of these control strategies to the cryogenic PLSS are addressed.
Technical Paper

Shuttle Induced Neutron Environment: Computational Requirements and Validation

2002-07-15
2002-01-2460
Most of the neutrons seen in the habitable environment of spacecraft in LEO are produced in local materials of the spacecraft structures by the impact of the LEO radiation environment. There are two components of the neutron spectra: one produced near the forward direction and a diffuse isotropic component. The forward component satisfies a Volterra equation and is solved by standard marching procedures. The diffuse component is generally of lower energy and nearly isotropically scattered as they diffuse through the spacecraft structures. Leakage at near boundaries marks the diffusion process and solutions are strongly dependent on forward and backward boundaries with minor contributions from lateral diffusion along spacecraft wall structures. The diffuse neutron equation is solved using multigroup methods with impressed forward and backward boundary conditions.
Technical Paper

Shuttle II

1987-07-01
871335
This paper presents a status report on the study of a next-generation manned launch system, called Shuttle II, being conducted at the NASA Langley Research Center. Underlying reasons for considering such a system include the need for low-cost, safe, and reliable manned access to space. System and operational characteristics for a Shuttle II vehicle are presented. The need for fully reusable launch systems with radically simpler ground and flight operations is stated to be critical in reducing launch costs. Advancing technologies have a major impact on the choice of vehicle concepts. For a near-term level of technology, a two-stage vertical-takeoff rocket vehicle has been selected for further in-depth Shuttle II studies. The role of the Shuttle 11 vehicle in a proposed space transportation system, which includes heavy lift and Space Shuttle complementary manned systems, is discussed.
Technical Paper

Retrofitting Avionics: Closing the Performance “Generation Gap”

1985-10-01
851813
This paper will examine modern avionics and related developments coming from the electronics revolution and show how they can be applied to in-service aircraft to produce significant performance improvements. While it is recognized the discussion could be very wide ranging, this paper will focus primarily on some of the developments in which NASA-Langley Research Center has been involved, including advanced flight management concepts, flat panel displays, and innovative fuel gauge designs. This paper will also look at emerging airspace system concepts, such as navigation using satellites and communications via data links, and provide a preliminary assessment of the impact of these concepts on in-service aircraft from the perspective of retrofitting avionics.
Technical Paper

Reconfigurable Control System Design for Future Life Support Systems

2008-06-29
2008-01-1976
A reconfigurable control system is an intelligent control system that detects faults within the system and adjusts its performance automatically to avoid mission failure, save lives, and reduce system maintenance costs. The concept was first successfully demonstrated by NASA between December 1989 and March 1990 on the F-15 flight control system (SRFCS), where software was integrated into the aircraft's digital flight control system to compensate for component loss by reconfiguring the remaining control loop. This was later adopted in the Boeing X-33. Other applications include modular robotics, reconfigurable computing structure, and reconfigurable helicopters. The motivation of this work is to test such control system designs for future long term space missions, more explicitly, the automation of life support systems.
Technical Paper

Radiation Environment Modeling for the Planet Mars

2005-07-11
2005-01-2832
In view of manned missions targeted to Mars, for which radiation exposure is one of the greatest challenges to be tackled, it is of fundamental importance to have available a tool, which allows the determination of the particle flux and spectra at any time at any point of the Martian surface. With this goal in mind, a new model for the radiation environment to be found on the planet Mars due to Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE) has been developed. Primary particle environments computed for Martian conditions are transported within the Mars atmosphere, with temporal properties modeled with variable timescales, down to the surface, with topography and backscattering patterns taken into account. The atmospheric chemical and isotopic composition has been modeled over results from the in-situ Viking Lander measurements for both major and minor components.
Technical Paper

Physiological Experience During Shuttle EVA

1995-07-01
951592
To date, 59 man-EVA's have been conducted in the Shuttle Program with minimum physiological problems or limitations. The physiological requirements for life support in the Shuttle EVA include pressure, gas composition, inspired CO2 pressure, heat- removal capability, in-suit water replacement, and caloric replacement. These requirements and their basis in verification testing or analysis are reviewed. The operational measures are identified. The suit pressure in combination with a gas composition of at least 92 percent assures that sufficient O2 pressure is available to the crewmember. The nominal suit pressure of 4.3 psi±0.1 psi was maintained during all 59 man-EVA's. The contingency suit pressure was never required to be used. The suit pressure in combination with the cabin pressure and pre-EVA denitrogenation procedures minimize the risk of altitude decompression sickness. There has been no incidence of decompression sickness during Shuttle EVA.
Technical Paper

Overview of NASA's Thermal Control System Development for Exploration Project

2009-07-12
2009-01-2436
NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems (LSS) project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several subelements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles' thermal control system. NASA's Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project.
Technical Paper

Optimizing Sensor and Actuator Arrays for ASAC Noise Control

2000-05-09
2000-01-1707
This paper summarizes the development of an approach to optimizing the locations for arrays of sensors and actuators in active noise control systems. A type of directed combinatorial search, called Tabu Search, is used to select an optimal configuration from a much larger set of candidate locations. The benefit of using an optimized set is demonstrated. The importance of limiting actuator forces to realistic levels when evaluating the cost function is discussed. Results of flight testing an optimized system are presented. Although the technique has been applied primarily to Active Structural Acoustic Control systems, it can be adapted for use in other active noise control implementations.
Technical Paper

Operational Experiences Of Jet Transports

1963-01-01
630445
Operational experiences of jet transports as determined from NASA VGH records collected during routine airline operations are discussed. The information presented relates to the flight loads, airspeed operating practices, and landing contact conditions. The load sources considered are gusts, maneuver, autopilot, and landing impact. The discussion of airspeeds covers the normal operating speeds, speeds in rough air, and overspeeds. Implications of the data as regards supersonic transport operations are indicated.
Technical Paper

Modification of the USOS to Support Installation and Activation of the Node 3 Element

2009-07-12
2009-01-2416
The International Space Station (ISS) program is nearing an assembly complete configuration with the addition of the final resource node module in early 2010. The Node 3 module will provide critical functionality in support of permanent long duration crews aboard ISS. The new module will permanently house the regenerative Environment Control and Life Support Systems (ECLSS) and will also provide important habitability functions such as waste management and exercise facilities. The ISS program has selected the Port side of the Node 1 “Unity” module as the permanent location for Node 3 which will necessitate architecture changes to provide the required interfaces. The USOS ECLSS fluid and ventilation systems, Internal Thermal Control Systems, and Avionics Systems require significant modifications in order to support Node 3 interfaces at the Node 1 Port location since it was not initially designed for that configuration.
Technical Paper

Lightweight, Flexible, and Freezable Heat Pump/Radiator for EVA Suits

2008-06-29
2008-01-2112
We have completed preliminary tests that show the feasibility of an innovative concept for a spacesuit thermal control system using a lightweight, flexible heat pump/radiator. The heat pump/radiator is part of a regenerable LiCI/water absorption cooling device that absorbs an astronaut's metabolic heat and rejects it to the environment via thermal radiation at a relatively high temperature. We identified key design specifications for the system, demonstrated that it is feasible to fabricate the flexible radiator, measured the heat rejection capability of the radiator, and assessed the effects on overall mass of the PLSS. We specified system design features that will enable the flexible absorber/radiator to operate in a wide range of space exploration environments. The materials used to fabricate the flexible absorber/radiator samples were all found to be low off-gassing and many have already been qualified for use in space.
Technical Paper

Light Aircraft Crash Safety Program

1974-02-01
740353
The Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA) have joined forces in a General Aviation Crashworthiness Program. This paper describes the research and development tasks of the program which are the responsibility of NASA. NASA is embarked upon research and development tasks aimed at providing the general aviation industry with a reliable crashworthy airframe design technology. The goals of the NASA program are: reliable analytical techniques for predicting the nonlinear behavior of structures; significant design improvements of airframes; and simulated full-scale crash test data. The analytical tools will include both simplified procedures for estimating energy absorption characteristics and more complex computer programs for analysis of general airframe structures under crash loading conditions.
Technical Paper

Innovative Schematic Concept Analysis for a Space Suit Portable Life Support Subsystem

2006-07-17
2006-01-2201
Conceptual designs for a space suit Personal Life Support Subsystem (PLSS) were developed and assessed to determine if upgrading the system using new, emerging, or projected technologies to fulfill basic functions would result in mass, volume, or performance improvements. Technologies were identified to satisfy each of the functions of the PLSS in three environments (zero-g, Lunar, and Martian) and in three time frames (2006, 2010, and 2020). The viability of candidate technologies was evaluated using evaluation criteria such as safety, technology readiness, and reliability. System concepts (schematics) were developed for combinations of time frame and environment by assigning specific technologies to each of four key functions of the PLSS -- oxygen supply, waste removal, thermal control, and power. The PLSS concepts were evaluated using the ExtraVehicular Activity System Sizing Analysis Tool, software created by NASA to analyze integrated system mass, volume, power and thermal loads.
Technical Paper

High Temperature Lift Heat Pump Refrigerant and Thermodynamic Cycle Selection

1994-06-01
941272
This paper describes the process and analysis used to select a refrigerant and thermodynamic cycle as the basis of a vapor compression heat pump requiring a high temperature lift. Use of a vapor compression heat pump versus other types was based on prior work performed for the Electric Power Research Institute. A high lift heat pump is needed to enable a thermal control system to remove heat down to 275K from a habitable volume when the external thermal environment is severe. For example, a long term habitat will reject heat from a space radiator to a 325K environment. The first step in the selection process was to perform an optimization trade study, quantifying the effect of radiator operating temperature and heat pump efficiency on total system mass; then, select the radiator operating temperature corresponding to the lowest system mass. Total system mass included radiators, all heat pump components and the power supply system.
X