Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Ventilation Transport Trade Study for Future Space Suit Life Support Systems

2008-06-29
2008-01-2115
A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.
Technical Paper

Utilization of On-Site Resources for Regenerative Life Support Systems at Lunar and Martian Outposts

1993-07-01
932091
Lunar and martian materials can be processed and used at planetary outposts to reduce the need (and thus the cost) of transporting supplies from Earth. A variety of uses for indigenous, on-site materials have been suggested, including uses as rocket propellants, construction materials, and life support materials. Utilization of on-site resources will supplement Regenerative Life Support Systems (RLSS) that will be needed to regenerate air, water, and wastes, and to produce food (e.g., plants) for human consumption during long-duration space missions.
Technical Paper

Using a Sweating Manikin, Controlled by a Human Physiological Model, to Evaluate Liquid Cooling Garments

2005-07-11
2005-01-2971
An Advanced Automotive Manikin (ADAM), is used to evaluate liquid cooling garments (LCG) for advanced space suits for extravehicular applications and launch and entry suits. The manikin is controlled by a finite-element physiological model of the human thermoregulatory system. ADAM's thermal response to a baseline LCG was measured.The local effectiveness of the LCG was determined. These new thermal comfort tools permit detailed, repeatable measurements and evaluation of LCGs. Results can extend to other personal protective clothing including HAZMAT suits, nuclear/biological/ chemical protective suits, fire protection suits, etc.
Technical Paper

The Walkback Test: A Study to Evaluate Suit and Life Support System Performance Requirements for a 10 Kilometer Lunar Traverse in a Planetary Suit

2007-07-09
2007-01-3133
As planetary suit and planetary life support systems develop, specific design inputs for each system relate to a presently unanswered question concerning operational concepts: What distance can be considered a safe walking distance for a suited crew member exploring the surface of the Moon to ‘walkback’ to the habitat in the event of a rover breakdown, taking into consideration the planned extravehicular activity (EVA) tasks as well as the possible traverse back to the habitat? It has been assumed, based on Apollo program experience, that 10 kilometers (6.2 mi) will be the maximum EVA excursion distance from the lander or habitat to ensure the crew member's safe return to the habitat in the event of a rover failure. To investigate the feasibility of performing a suited 10 km walkback, NASA-JSC assembled a multi-disciplinary team to design and implement the ‘Lunar Walkback Test’.
Technical Paper

The Influence of Microbiology on Spacecraft Design and Controls: A Historical Perspective of the Shuttle and International Space Station Programs

2006-07-17
2006-01-2156
For over 40 years, NASA has been putting humans safely into space in part by minimizing microbial risks to crew members. Success of the program to minimize such risks has resulted from a combination of engineering and design controls as well as active monitoring of the crew, food, water, hardware, and spacecraft interior. The evolution of engineering and design controls is exemplified by the implementation of HEPA filters for air treatment, antimicrobial surface materials, and the disinfection regimen currently used on board the International Space Station. Data from spaceflight missions confirm the effectiveness of current measures; however, fluctuations in microbial concentrations and trends in contamination events suggest the need for continued diligence in monitoring and evaluation as well as further improvements in engineering systems. The knowledge of microbial controls and monitoring from assessments of past missions will be critical in driving the design of future spacecraft.
Technical Paper

The Effects of Occupant and Vehicular Parameters on the Onset and Severity of Whiplash Associated Disorder from Low Speed Rear-End Collisions

2002-03-04
2002-01-0538
The effects of Whiplash Associated Disorder (WAD) from low speed rear-end collisions (REC) have been reported in the medical, scientific and engineering literature for several decades. Given the method of analysis, results have varied regarding the nature, onset and severity of spinal injury. While previously conducted laboratory crash tests have advanced the understanding of occupant dynamics from RECs, concern over investigative methodology and experimental artificiality remains. The purpose of this study is to determine if any relationship existed between specific occupant characteristics, vehicular acceleration and the onset and severity of WAD. Ninety-five subjects involved in real world RECs are selected from an active database. Data is collected over an 18-month period. Fifty-nine subjects are females and 70% of the subjects are drivers.
Technical Paper

The Advanced Life Support Human-Rated Test Facility: Testbed Development and Testing to Understand Evolution to Regenerative Life Support

1996-07-01
961592
As part of its integrated system test bed capability, NASA's Advanced Life Support Program has undertaken the development of a large-scale advanced life support facility capable of supporting long-duration testing of integrated, regenerative biological and physicochemical life support systems. This facility--the Advanced Life Support Human-Rated Test Facility (HRTF) is currently being built at the Johnson Space Center. The HRTF is comprised of a series of interconnected chambers with a sealed internal environment capable of supporting a test crew of four for periods exceeding one year. The life support system will consist of both biological and physicochemical components and will perform air revitalization, water recovery, food production, solid waste processing, thermal management, and integrated command and control functions. Currently, a portion of this multichamber facility has been constructed and is being outfitted with basic utilities and infrastructure.
Technical Paper

The Advanced Design of a Liquid Cooling Garment Through Long-Term Research: Implications of the Test Results on Three Different Garments

2009-07-12
2009-01-2517
The most recent goal of our research program was to identify the optimal features of each of three garments to maintain core temperature and comfort under intensive physical exertion. Four males and 2 females between the ages of 22 and 46 participated in this study. The garments evaluated were the MACS-Delphi, Russian Orlan, and NASA LCVG. Subjects were tested on different days in 2 different environmental chamber temperature/humidity conditions (24°C/H∼28%; 35°C/H∼20%). Each session consisted of stages of treadmill walking/running (250W to 700W at different stages) and rest. In general, the findings showed few consistent differences among the garments. The MACS-Delphi was better able to maintain subjects within a skin and core temperature comfort zone than was evident in the other garments as indicated by a lesser fluctuation in temperatures across physical exertion levels.
Technical Paper

Testing of an Integrated Air Revitalization System

1995-07-01
951661
Long-duration missions in space will require regenerative air revitalization processes. Human testing of these regenerative processes is necessary to provide focus to the system development process and to provide realistic metabolic and hygiene inputs. To this end, the Lyndon B. Johnson Space Center (JSC), under the sponsorship of NASA Headquarters Office of Life and Microgravity Sciences and Applications, is implementing an Early Human Testing (EHT) Project. As part of this project, an integrated physicochemical Air Revitalization System (ARS) is being developed and tested in JSC's Life Support Systems Integration Facility (LSSIF). The components of the ARS include a Four-Bed Molecular Sieve (4BMS) Subsystem for carbon dioxide (CO2) removal, a Sabatier CO2 Reduction Subsystem (CRS), and a Solid Polymer Electrolyte (SPE)™ Oxygen Generation Subsystem (OGS). A Trace Contaminant Control Subsystem (TCCS) will be incorporated at a later date.
Technical Paper

System Engineering and Integration of Controls for Advanced Life Support

2006-07-17
2006-01-2121
The Advanced Integration Matrix (AIM) project at the Johnson Space Center (JSC) was chartered to study and solve systems-level integration issues for exploration missions. One of the first issues identified was an inability to conduct trade studies on control system architectures due to the absence of mature evaluation criteria. Such architectures are necessary to enable integration of regenerative life support systems. A team was formed to address issues concerning software and hardware architectures and system controls.. The team has investigated what is required to integrate controls for the types of non-linear dynamic systems encountered in advanced life support. To this end, a water processing bioreactor testbed is being developed which will enable prototyping and testing of integration strategies and technologies.
Technical Paper

Subjective Perception of Thermal and Physical Comfort in Three Liquid Cooling Garments

2009-07-12
2009-01-2516
The subjective aspects of comfort in three different cooling garments, the MACS-Delphi, Russian Orlan, and LCVG were evaluated. Six subjects (4 males and 2 females) were tested in separate sessions in each garment and in one of two environmental chamber conditions: 24°C and 35°C. Subjects followed a staged exercise/rest protocol with different levels of physical exertion at different stages. Thermal comfort and heat perception were assessed by ratings on visual analog scales. Ratings of physical comfort of the garment and also garment flexibility in positions simulating movements during planetary exploration were also obtained. The findings indicated that both overall thermal comfort and head thermal comfort were rated highest in the MACS-Delphi at 24°C. The Orlan was rated lowest on physical comfort and less flexible in different body positions.
Technical Paper

Spacesuit Radiation Shield Design Methods

2006-07-17
2006-01-2110
Meeting radiation protection requirements during EVA is predominantly an operational issue with some potential considerations for temporary shelter. The issue of spacesuit shielding is mainly guided by the potential of accidental exposure when operational and temporary shelter considerations fail to maintain exposures within operational limits. In this case, very high exposure levels are possible which could result in observable health effects and even be life threatening. Under these assumptions, potential spacesuit radiation exposures have been studied using known historical solar particle events to gain insight on the usefulness of modification of spacesuit design in which the control of skin exposure is a critical design issue and reduction of blood forming organ exposure is desirable.
Technical Paper

Space Suit Radiator Performance in Lunar and Mars Environments

2007-07-09
2007-01-3275
During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment and the load from the electrical components. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Last year we reported on the design and initial operational assessment tests of a novel radiator designated the Radiator And Freeze Tolerant heat eXchanger (RAFT-X).
Technical Paper

Simulation Study of Space Suit Thermal Control

2000-07-10
2000-01-2391
Automatic thermal comfort control for the minimum consumables PLSS is undertaken using several control approaches. Accuracy and performance of the strategies using feedforward, feedback, and gain scheduling are evaluated through simulation, highlighting their advantages and limitations. Implementation issues, consumable usage, and the provision for the extension of these control strategies to the cryogenic PLSS are addressed.
Technical Paper

Shuttle Orbiter Environmental Control and Life Support System-Flight Experience

1996-07-01
961334
The Orbiter Environmental Control and Life Support System (ECLSS) functioned successfully on 76 Shuttle missions to date. The ECLSS consists of six subsystems which provide both a habitable environment for the crew and active vehicle thermal control. The Orbiter ECLSS design is reviewed in this paper and the operational flight experience is summarized. Significant flight problems are described, along with the design or procedural changes implemented to resolve the problems. The design and flight experience is summarized for recent enhancements to the ECLSS to meet extended duration missions and to accommodate visits to the Mir Space Station and to the International Space Station.
Technical Paper

Self Contained Atmospheric Protective Ensemble (SCAPE) Suits Redesign and Implementation at Kennedy Space Center

2005-07-11
2005-01-2959
The Self Contained Atmospheric Protective Ensemble (SCAPE) suits, worn at the Kennedy Space Center (KSC) have been updated from the original 1970's design. The suits were renamed Propellant Handlers Ensemble (PHE) but are still commonly referred to as SCAPE. Several modifications to the suit were done over the last 20 years to improve the design for operational use. However, anthropometric changes in the user population over time have not been addressed. The following study addressed anthropometric concerns in the current SCAPE population. It was found that all suits had at least one area in which the recommended upper limit was exceeded by technicians. The most common areas to exceed the upper limit were: waist circumference, chest circumference and upper thigh circumference. Forearm circumference posed the least concern unless using long gauntlet glove which cause the twist lock ring to be located at the forearm rather than the wrist.
Technical Paper

Removal of Low Levels of Ammonium Ion From pacecraft Recycled Water

1999-07-12
1999-01-2119
Poly (vinyl chloride) (PVC) matrix membranes which incorporate the ionophore nonactin have been evaluated as cation exchange membranes for ammonium ion transport in an electrolytic cell configuration. Interest exists for the development of cation selective membranes for removal of low levels (<200ppm) of ammonium ions commonly found in recycled effluent streams in such diverse applications as expected in a Space Station and commercial fisheries. Ammonium ions are generated as a decomposition product of urea and over time build up in concentration, thus rendering the water unsuitable for human consumption. Nonactin is commonly used in a PVC matrix for ion-selective electrodes.
Technical Paper

Regenerative Water Recovery System Testing and Model Correlation

1997-07-01
972550
Biological wastewater processing has been under investigation by AlliedSignal Aerospace and NASA Johnson Space Center (JSC) for future use in space. Testing at JSC in the Hybrid Regenerative Water Recovery System (HRWRS) in preparation for future closed human testing has been performed. Computer models have been developed to aid in the design of a new four-person immobilized cell bioreactor. The design of the reactor and validation of the computer model is presented. In addition, the total organic carbon (TOC) computer model has been expanded to begin investigation of nitrification. This model is being developed to identify the key parameters of the nitrification process, and to improve the design and operating conditions of nitrifying bioreactors. In addition, the model can be used as a design tool to rapidly predict the effects of changes in operational conditions and reactor design, significantly reducing the number and duration of experiments required.
Technical Paper

Regenerative Life Support Systems Test Bed Performance: Lettuce Crop Characterization

1992-07-01
921391
Two crops of lettuce (Lactuca sativa cv. Waldmann's Green) were grown in the Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center. The RLSS Test Bed is an atmospherically closed, controlled environment facility for the evaluation of regenerative life support systems using higher plants. The chamber encloses 10.6 m2 of growth area under cool-white fluorescent lamps. Lettuce was double seeded in 480 pots, each containing about 250 cm3 of calcined-clay substrate. Each pot was irrigated with half-strength Hoagland's nutrient solution at an average total applied amount of 2.5 and 1.8 liters pot-1, respectively, over each of the two 30-day crop tests. Average environmental and cultural conditions during both tests were 23°C air temperature, 72% relative humidity, 1000 ppm carbon dioxide (CO2), 16h light/8h dark photoperiod, and 356 μmol m-2s-1 photosynthetic photon flux.
X