Refine Your Search

Topic

Author

Search Results

Technical Paper

The Development of Auto Temp II

1972-02-01
720288
The development of the AUTO TEMP II Temperature Control System used in Chrysler Corp. vehicles is summarized. A description of the design, development, function, and manufacturing aspects of the control system is presented, with emphasis on unique control parameters, reliability, serviceability, and check-out of production assemblies. Auto Temp II was developed by Chrysler in conjunction with Ranco Incorporated. The servo-controlled, closed-loop system, which has a sensitivity of 0.5 F, utilizes a water-flow control valve for temperature control, along with a cold engine lockout. The basic components are: sensor string, servo, and amplifier. All automatic functions involving control of mass flow rate, temperature, and distribution of the air entering the vehicle, are encompassed in one control unit. All components are mechanically linked through the gear train and are responsive to the amplifier through the feedback potentiometer.
Technical Paper

The Chrysler PowerFlite Transmission

1954-01-01
540261
THE design and construction of the PowerFlite automatic transmission are described by the authors. It is of the torque converter type, some models being water-cooled, while others are direct air cooled. Details of the hydraulic controls are explained, including the one-piece shift valve and the shuttle valve for controlling closed-throttle shifts. It is claimed that this transmission has relative simplicity, light weight, and smoothness of operation.
Technical Paper

The Application of Graphics Engineering to Gear Design

1986-10-01
861347
A highly competitive market and increased emphasis on quality have gear designers searching for additional tools to produce accurate gearsets in a condensed timeframe. To meet this challenge, a Graphics Engineering method has been developed to enhance traditional gear design techniques. Graphics Engineering links interactive graphics, finite element analysis and solid modeling into a graphics/analysis development package. Starting with gear and cutter data derived by conventional techniques, it provides cutter paths and involute profiles for geometry, strength, and physical property analysis. The comprehensive data obtained through Graphics Engineering provides a powerful tool for the gear designer to increase gearset accuracy and reduce design iterations.
Technical Paper

Statistical Decision Making in FMVSS Testing

1989-02-01
890771
This paper presents a method of accounting for sample variability and sample size in establishing the acceptable bogey levels. The technique makes use of the statistical tolerance theory which accounts for the variability of the sample mean and standard deviation by determining a K-factor adjusted for sample size. The result is a tolerance that is reasonably assumed to cover a specified fraction of the population of parts. The technique, although not as simple as a fixed bogey, does discriminate between designs with different levels of energy management robustness.
Technical Paper

Static and Dynamic Dent Resistance Performance of Automotive Steel Body Panels

1997-02-24
970158
In recent years, strict weight reduction targets have pushed auto manufacturers to use lighter gauge sheet steels in all areas of the vehicle including exterior body panels. As sheet metal thicknesses are reduced, dentability of body panels becomes of increasing concern. Thus, the goal becomes one of reducing sheet metal thickness while maintaining acceptable dent resistance. Most prior work in this area has focused on quasi-static loading conditions. In this study, both quasi-static and dynamic dent tests are evaluated. Fully assembled doors made from mild, medium strength bake hardenable and non-bake hardenable steels are examined. The quasi-static dent test is run at a test speed of 0.1 m/minute while the dynamic dent test is run at a test speed of 26.8 m/minute. Dynamic dent testing is of interest because it more closely approximates real life denting conditions such as in-plant handling and transit damage, and parking lot damage from car door and shopping cart impact.
Technical Paper

Running Loss Test Procedure Development

1992-02-01
920322
A running loss test procedure has been developed which integrates a point-source collection method to measure fuel evaporative running loss from vehicles during their operation on the chassis dynamometer. The point-source method is part of a complete running loss test procedure which employs the combination of site-specific collection devices on the vehicle, and a sampling pump with sampling lines. Fugitive fuel vapor is drawn into these collectors which have been matched to characteristics of the vehicle and the test cell. The composite vapor sample is routed to a collection bag through an adaptation of the ordinary constant volume dilution system typically used for vehicle exhaust gas sampling. Analysis of the contents of such bags provides an accurate measure of the mass and species of running loss collected during each of three LA-4* driving cycles. Other running loss sampling methods were considered by the Auto-Oil Air Quality Improvement Research Program (AQIRP or Program).
Technical Paper

Reducing Cold-Start Emissions by Catalytic Converter Thermal Management

1995-02-01
950409
Vacuum insulation and phase-change thermal storage have been used to enhance the heat retention of a prototype catalytic converter. Storing heat in the converter between trips allows exhaust gases to be converted more quickly, significantly reducing cold-start emissions. Using a small metal hydride, the thermal conductance of the vacuum insulation can be varied continuously between 0.49 and 27 W/m2K (R-12 to R-0.2 insulation) to prevent overheating of the catalyst. A prototype was installed in a Dodge Neon with a 2.0-liter engine. Following a standard preconditioning and a 23-hour cold soak, an FTP (Federal Test Procedure) emissions test was performed. Although exhaust temperatures during the preconditioning were not hot enough to melt the phase-change material, the vacuum insulation performed well, resulting in a converter temperature of 146°C after the 23-hour cold soak at 27°C.
Technical Paper

Rating Transmissions from Highway Requirements and Vehicle Specifications

1960-01-01
600009
THE GRADEABILITY formula can be used as the basic means for rating a truck transmission. By correlating the gradeabilities in the various gear ratios with a highway requirement probability curve, the per cent of time in each ratio can be obtained. The required hours of gear life for each ratio are then determined, and compared with the available gear life in the ratios. This procedure gives a detailed analysis of a transmission rating for one vehicle specification at a specified mileage between overhauls. A limitation of the system is that it cannot be applied quickly to various vehicle specifications. The paper outlines the method for constructing a nomogram to overcome this.*
Technical Paper

Predicting ROAD PERFORMANCE of Commercial Vehicles

1950-01-01
500172
A SIMPLE method of predicting truck performance in terms of grade ability at a given road speed, taking into consideration rolling resistance, air resistance, and chassis friction is presented here. A brief review of fundamental considerations is given first, then the method recommended for predicting vehicle ability at a selected speed, and finally a few words on the prediction of maximum possible road speed and selection of gear ratios. The basis of the solution is the determination and expression of vehicle resistances in terms of horsepower - that is, in terms of forces acting at a velocity. A convenient method of solving the grade problem at a given speed is by means of a tabular computation sheet, which is given, together with tables and charts. These assist in making the computation an easy one as well as giving the necessary data on vehicle resistances.
Technical Paper

Performance of Heat-Resistant Alloys in Emission-Control Systems

1974-02-01
740093
An extensive program has been established to screen and evaluate heat- and corrosion-resistant alloys that may have some potential application in emission-control systems anywhere from the exhaust manifold to the tailpipe. The various phases of this program, which include tests conducted in air and controlled exhaust atmospheres at temperatures between 1300-2200°F are described. Some selected test data and the results of metallographic studies are presented to illustrate how representative alloys react to the various test conditions. The characteristics and functions of the basic emission-control devices are reviewed in light of their effect upon materials requirements.
Technical Paper

Natural Gas Converter Performance and Durability

1993-03-01
930222
Natural gas-fueled vehicles impose unique requirements on exhaust aftertreatment systems. Methane conversion, which is very difficult for conventional automotive catalysts, may be required, depending on future regulatory directions. Three-way converter operating windows for simultaneous conversion of HC, CO, and NOx are considerably more narrow with gas engine exhaust. While several studies have demonstrated acceptable fresh converter performance, aged performance remains a concern. This paper presents the results of a durability study of eight catalytic converters specifically developed for natural gas engines. The converters were aged for 300 hours on a natural gas-fueled 7.0L Chevrolet engine operated at net stoichiometry. Catalyst performance was evaluated using both air/fuel traverse engine tests and FTP vehicle tests. Durability cycle severity and a comparison of results for engine and vehicle tests are discussed.
Technical Paper

Life Cycle Management of Hydraulic Fluids and Lubricant Oils at Chrysler

1998-11-30
982221
A systematic life cycle management (LCM) approach has been used by Chrysler Corporation to compare existing and alternate hydraulic fluids and lubricating oils in thirteen classifications at a manufacturing facility. The presence of restricted or regulated chemicals, recyclability, and recycled content of the various products were also compared. For ten of the thirteen types of product, an alternate product was identified as more beneficial. This LCM study provided Chrysler personnel with a practical purchasing tool to identify the most cost effective hydraulic fluid or lubricant oil product available for a chosen application on an LCM basis.
Technical Paper

In-Situ Phase-Shift Measurement of the Time-Resolved UBHC Emissions

1995-02-01
950161
The UBHC emissions during cold starting need to be controlled in order to meet the future stringent standards. This requires a better understanding of the characteristics of the time resolved UBHC signal measured by a high frequency FID and its phasing with respect to the valve events. The computer program supplied with the instrument and currently used to compute the phase shift has many uncertainties due to the unsteady nature of engine operation during starting. A new technique is developed to measure the in-situ phase shift of the UBHC signal under the transient thermodynamic and dynamic conditions of the engine. The UBHC concentration is measured at two locations in the exhaust manifold of one cylinder in a multicylinder port injected gasoline engine. The two locations are 77 mm apart. The downstream probe is positioned opposite to a solenoid-operated injector which delivers a gaseous jet of hydrocarbon-free nitrogen upon command.
Technical Paper

Improvements in the Dent Resistance of Steel Body Panels

1992-02-01
920243
A computer-controlled body panel testing machine has been used to quantify stiffness and dent resistance of body panels at Chrysler. The influence of yield strength and local reinforcement on the mechanical behavior of automotive door panels has been investigated. Medium strength steels in the range of 210 -240 MPa yield strength have produced significant improvements in dent resistance over a 160 MPa yield strength steel. Considerable improvements in dent resistance can also be attributed to the use of local, adhesively attached, glass fiber reinforcement patches. The effects of boundary conditions and panel shape on stiffness and dent resistance are illustrated in this application.
Technical Paper

Impact Response of Foam: The Effect of the State of Stress

1996-11-01
962418
The Finite Element predictions of the physical response of foams during impact by a rigid body (such as, the Hybrid III head form) is determined by material law equations generally approximated based on the theory of elastoplasticity. However, the structural aspect of foam, its discontinuous nature, makes it difficult to apply the laws of continuum mechanics and construct constitutive equations for foam-like material. One part of the problem relates to the state of stress. In materials such as steel, the state of hydrostatic stress does not affect the stress strain behavior under uniaxial compression or tension in plastic regime. In other words, when steel is subject to hydrostatic pressures the stress strain characteristic can be predicted from a uniaxial test. However, if the stresses acting on a section of foam are triaxial, the response of a head-form may be different than predicted from uniaxial test data.
Technical Paper

Hydrogen Embrittlement in Automotive Fastener Applications

1996-02-01
960312
Fastener failure due to hydrogen embrittlement is of significant concern in the automotive industry. These types of failures occur unexpectedly. They may be very costly to the automotive company and fastener supplier, not only monetarily, but also in terms of customer satisfaction and safety. This paper is an overview of a program which one automotive company initiated to minimize hydrogen embrittlement in fasteners. The objectives of the program were two-fold. One was to obtain a better understanding of the hydrogen embrittlement phenomena as it relates to automotive fastener materials and processes. The second and most important objective, was to eliminate hydrogen embrittlement failures in vehicles. Early program efforts concentrated on a review of fastener applications and corrosion protection systems to optimize coated fasteners for hydrogen embrittlement resistance.
Technical Paper

High Performance Forged Steel Crankshafts - Cost Reduction Opportunities

1992-02-01
920784
Higher horsepower per liter engines have put more demand on the crankshaft, often requiring the use of forged steel. This paper examines cost reduction opportunities to offset the penalties associated with forged steel, with raw material and machinability being the primary factors evaluated. A cost model for crankshaft processing is utilized in this paper as a design tool to select the lowest cost material grade. This model is supported by fatigue and machinability data for various steel grades. Materials considered are medium carbon, low alloy, and microalloy steels; the effects of sulfur as a machining enhancer is also studied.
Technical Paper

Digital Recording of Vehicle Crash Data

1981-06-01
810810
This paper discusses the development and implementation of a 16 channel data acquisition system for high “G” impact testing which includes a self-contained, on-board data acquisition unit, a programmer-exerciser and debriefing subsystems. The microprocessor controlled, on-board unit contains all signal conditioning, A/D conversion hardware and logic to store 4K 12 bit samples of data per channel. This unit will debrief into an oscilloscope, a desk-top computer or a large disk-based minicomputer system. Advantages over previous systems include the elimination of costly hardware (such as umbilical cables and recorders), and a reduction in pre-test preparation and data processing time.
Technical Paper

Development Highlights and Unique Features of New Chrysler V-8 Engine

1951-01-01
510196
THE design and development of the new valve-in-head V-8 Chrysler engine of 7.5 compression ratio are described here. Among the features discussed by the authors are: the hemispherical combustion chamber, V-8 cylinder arrangement, double-breaker distributor, “thermal flywheel” on automatic choke, and exhaust-heated and water-jacketed throttle bodies. The hemispherical combustion chamber was adopted after it had displayed excellent volumetric and indicated thermal efficiencies, and an ability to maintain these high efficiencies in service. The high volumetric efficiency, for example, is considered to be due to such design features as valves not crowded together, nor surrounded closely by the combustion-chamber walls. They are thereby fully effective in the flow of the fuel-air mixture and the exhaust gases. The authors also present performance data for this engine, which, at full throttle, develops 180 hp at 4000 rpm and 312 ft-lb of torque at 2000 rpm.
Technical Paper

Determining Hardenability on Small Sizes

1941-01-01
410115
LIMITATIONS of the two general methods available for determining hardenability in steel, the authors point out, are that the test piece may not have a sufficient cross-section in which to develop the desired series of cooling rates, and that a special test piece (known as the L-type) must be machined for steels of low hardenability. The method using the Wuerfel bomb described in their paper, they explain, is directed primarily toward removal of these two limitations. Stated in terms of the critical diameter, they report that the results of the method are reproducible within ⅛ in.
X