Refine Your Search

Topic

Search Results

Technical Paper

Windage Tray Design Comparison Using Crankcase Breathing Simulation

2013-04-08
2013-01-0580
The conflicting requirements of better fuel economy, higher performance and lower emissions from an automobile engine have brought many new challenges that require development teams to look beyond conventional test and seek answers from simulations. One of the relatively unexplored areas of development where frictional losses haven't been completely understood is the flow in the crankcase. Here computational engineering can play a significant role in analyzing flow field in a hidden and complex region where otherwise testing has serious limitations. Flow simulation in the crankcase poses significant complexity and provides an opportunity to enhance the understanding of underlying physics by using multi-physics analyses tools available commercially. In this study, air space under the piston and above the oil level in oil pan is simulated. It is known that bay-to-bay breathing and windage holes account for considerable amount of power losses in the crankcase.
Technical Paper

Vehicle Body Panel Thermal Buckling Resistance Analysis

2014-04-01
2014-01-0926
This paper discusses CAE simulation methods to predict the thermal induced buckling issues when vehicle body panels are subjected to the elevated temperature in e-coat oven. Both linear buckling analysis and implicit quasi-static analysis are discussed and studied using a quarter cylinder shell as an example. The linear buckling analysis could produce quick but non-conservative buckling temperature. With considering nonlinearity, implicit quasi-static analysis could predict a relative conservative critical temperature. In addition, the permanent deformations could be obtained to judge if the panel remains visible dent due to the buckling. Finally these two approaches have been compared to thermal bucking behavior of a panel on a vehicle going through thermal cycle of e-coat oven with the excellent agreement on its initial design and issue fix design. In conclusion, the linear buckling analysis could be used for quick thermal buckling evaluation and comparison on a series of proposals.
Journal Article

Statistical Considerations for Evaluating Biofidelity, Repeatability, and Reproducibility of ATDs

2013-04-08
2013-01-1249
Reliable testing of a mechanical system requires the procedures used for the evaluation to be repeatable and reproducible. However, it is never possible to exactly repeat or reproduce the tests that are used for evaluation. To overcome this limitation, a statistical evaluation procedure can generally be used. However, most of the statistical procedures use scalar values as input without the ability to handle vectors or time-histories. To overcome these limitations, two numerical/statistical methods for determining if the impact time-history response of a mechanical system is repeatable or reproducible are evaluated and elaborated upon. Such a system could be a vehicle, a biological human surrogate, an Anthropometric Test Device (ATD or dummy), etc. The responses could be sets of time-histories of accelerations, forces, moments, etc., of a component or of the system. The example system evaluated is the BioRID II rear impact dummy.
Technical Paper

Smart Meshing Template Process with CAD/CAE Link

2013-04-08
2013-01-0637
The benefits of utilizing virtual engineering include not only shortened product development time and reduced reliance on expensive physical testing, but also the opportunities for greater standardization to support higher product quality. This paper describes a project for building a smart meshing template with a CAD/CAE link. The objective of the project is to optimize the utilization of CAD software and CAE preprocessing software capabilities. The deliverable of the project is a cylinder head mesh template which meets all the cylinder head durability simulation meshing requirements, and which links to CAD/CAE software. Special surface areas identified are built into the cylinder head CAD model design. By using one of the features in CAD software, all the special surfaces can be automatically updated throughout the design process.
Book

Principles of Vibration Analysis with Applications in Automotive Engineering

2011-01-10
This book, written for practicing engineers, designers, researchers, and students, summarizes basic vibration theory and established methods for analyzing vibrations. Principles of Vibration Analysis goes beyond most other texts on this subject, as it integrates the advances of modern modal analysis, experimental testing, and numerical analysis with fundamental theory. No other book brings all of these topics together under one cover. The authors have compiled these topics, compared them, and provided experience with practical application. This must-have book is a comprehensive resource that the practitioner will reference time and again.
Journal Article

Modeling and Analysis of Powertrain NVH with Focus on Growl Noise

2013-05-13
2013-01-1875
Superior NVH performance is a key focus in the development of new powertrains. In recent years, computer simulations have gained an increasing role in the design, development, and optimization of powertrain NVH at component and system levels. This paper presents the results of a study carried out on a 4-cylinder in-line spark-ignition engine with focus on growl noise. Growl is a low frequency noise (300-700 Hz) which is primarily perceived at moderate engine speeds (2000-3000 rpm) and light to moderate throttle tip-ins. For this purpose, a coupled and fully flexible multi-body dynamics model of the powertrain was developed. Structural components were reduced using component mode synthesis and used to determine dynamics loads at various engine speeds and loading conditions. A comparative NVH assessment of various crankshaft designs, engine configurations, and in- cylinder gas pressures was carried out.
Technical Paper

Impact of Functional Safety on EMC: ISO 26262

2013-04-08
2013-01-0178
The complexity of both hardware and software has increased significantly in automotive over the past decade. This is apparent even in the compact passenger car market segment where the presence of electronic control units (ECU) has nearly tripled. In today's luxury vehicles, software can reach 100 million lines of code and are only projected to increase. Without preventive measures, the risk of safety-related system malfunction becomes unacceptably too high. The functional safety standard ISO 26262, released as first edition in 2011, provides crucial safety-related requirements for passenger vehicles. Although the standard defines the proper development for safety-related systems to ensure the avoidance of a hazard, it's implication for electromagnetic compatibility (EMC) is not clearly defined. This paper outlines the impact of ISO 26262 for EMC related issues, and discusses the standard's implications for EMC requirements on the present EMC practices for production vehicles.
Technical Paper

Impact of Ethanol Fuels on Regulated Tailpipe Emissions

2012-04-16
2012-01-0872
Flexible fuel vehicle production has been steadily increasing in the US over the past fifteen years. Ethanol is considered a renewable fuel additive to gasoline which helps the US efforts in minimizing the dependency on foreign oil. As a result, it is becoming very hard to find pure gasoline which does not contain some ethanol content at the pump in the US. The fuel currently available at the pump contains close to 10% ethanol. The fuel and evaporative systems components and materials on newer flexible fuel vehicles are being designed to be tolerant of the 10% ethanol content. There is a strong desire from ethanol producers to increase the ethanol content up to a 20% level. This is still being debated by the Environmental Protection Agency and a final decision has not been made yet but will be announced by the upcoming Tier 3 Notice of Public Rule Making (NPRM) in December of 2011.
Technical Paper

Gasoline Combustion Modeling of Direct and Port-Fuel Injected Engines using a Reduced Chemical Mechanism

2013-04-08
2013-01-1098
A set of reduced chemical mechanisms was developed for use in multi-dimensional engine simulations of premixed gasoline combustion. The detailed Primary Reference Fuel (PRF) mechanism (1034 species, 4236 reactions) from Lawrence Livermore National Laboratory (LLNL) was employed as the starting mechanism. The detailed mechanism, referred to here as LLNL-PRF, was reduced using a technique known as Parallel Direct Relation Graph with Error Propagation and Sensitivity Analysis. This technique allows for efficient mechanism reduction by parallelizing the ignition delay calculations used in the reduction process. The reduction was performed for a temperature range of 800 to 1500 K and equivalence ratios of 0.5 to 1.5. The pressure range of interest was 0.75 bar to 40 bar, as dictated by the wide range in spark timing cylinder pressures for the various cases. In order to keep the mechanisms relatively small, two reductions were performed.
Journal Article

Estimation of Individual Cylinder Fuel Air Ratios from a Switching or Wide Range Oxygen Sensor for Engine Control and On-Board Diagnosis

2011-04-12
2011-01-0710
The fuel air ratio imbalance between individual cylinders can result in poor fuel economy and severe exhaust emissions. Individual cylinder fuel air ratio control is one of the important techniques used to improve fuel economy and reduce exhaust emission. California Air Resources Board (CARB) also has required automotive manufacturers to equip with on-board diagnosis system for cylinder fuel air ratio imbalance detection starting in 2011. However, one of the most challenging tasks for the individual cylinder fuel air ratio control and cylinder imbalance diagnosis is how to retrieve the cylinder fuel air ratio information effectively at low cost. This paper presents a novel and practical signal processing based fuel air ratio estimation method for individual cylinder fuel air ratio balance control and on-board fuel air ratio imbalance diagnosis.
Technical Paper

EGR Systems Evaluation in Turbocharged Engines

2013-04-08
2013-01-0936
EGR systems are widely applied in modern turbocharged diesel engines to reduce engine-out emissions and will, or are being used to mitigate engine knock in SI engines for improved SI engine efficiency and power. In this paper, different EGR systems are detailed and evaluated theoretically based on the thermodynamics of a turbocharged system featuring an EGR sub-system. Turbine expansion ratio is utilized as a metric to estimate engine efficiency, i.e., pumping losses during the gas exchange process. Approaches such as compressor and turbine bypassing are evaluated as well. Based on above analysis, a new approach is put forward to expand the turbocharger work zone, particularly in the high efficiency regions by correctly utilizing EGR systems at all engine speed range: low-pressure loop EGR system at lower engine speed range and high-pressure loop EGR system at high engine speed range.
Technical Paper

Die Wear Estimation in Automotive Sheet Metal Stamping

2013-04-08
2013-01-1171
Automotive industry's migration to usage of HSS (High Strength Steels), AHSS (Advance High Strength Steels) from conventional steels for their low weight and high strength properties has had its significant effects on die wear. The unpredictability of die wear can pose manufacturing issues, for example, undesirable tool life. Hence die wear has been gaining immense attention and lot of research work has been carried out to provide a die wear prediction method. This paper focuses on the method of estimating wear mathematically based on the mechanics behind die wear phenomenon. This is also an effort to study wear on die for an automotive component in critical areas for which the amount of wear are calculated. This study is further to be correlated with production data from die maintenance record, explicit measurement of die wear, etc., to validate the estimation.
Technical Paper

Development of an Analytical Modeling Method and Testing Procedures to Aid in the Design of Cardan Joints for Front Steerable Beam Axles

2013-04-08
2013-01-0819
The Cardan joint of a steerable beam front axle is a complicated mechanical component. It is subjected to drive torque, speed fluctuations, and joint articulation due to powertrain inputs, steering, and suspension kinematics. This combination of high torque and speed fluctuations of the Cardan joint, due to high input drive torque and/or high steer angle maneuvers, can result in premature joint wear. Initially, some observations of premature wear were not well understood based on the existing laboratory and road test data. The present work summarizes a coordinated program of computer modeling, vehicle Rough Road data acquisition, and physical testing used to predict the joint dynamics and to develop advanced testing procedures. Results indicate analytical modeling can predict forces resulting from Cardan joint dynamics for high torque/high turn angle maneuvers, as represented by time history traces recorded in rough road data acquisition.
Journal Article

Development of a Standard Spin Loss Test Procedure for FWD-Based Power Transfer Units

2013-04-08
2013-01-0361
As vehicle fuel economy continues to grow in importance, the ability to accurately measure the level of efficiency on all driveline components is required. A standardized test procedure enables manufacturers and suppliers to measure component losses consistently and provides data to make comparisons. In addition, the procedure offers a reliable process to assess enablers for efficiency improvements. Previous published studies have outlined the development of a comprehensive test procedure to measure transfer case speed-dependent parasitic losses at key speed, load, and environmental conditions. This paper will take the same basic approach for the Power Transfer Units (PTUs) used on Front Wheel Drive (FWD) based All Wheel Drive (AWD) vehicles. Factors included in the assessment include single and multi-stage PTUs, fluid levels, break-in process, and temperature effects.
Technical Paper

Developing the AC17 Efficiency Test for Mobile Air Conditioners

2013-04-08
2013-01-0569
Chrysler, Ford, General Motors, the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) have collaborated over the past two years to develop an efficiency test for mobile air conditioner (MAC) systems. Because the effect of efficiency differences between different MAC systems and different technologies is relatively small compared to overall vehicle fuel consumption, quantifying these differences has been challenging. The objective of this program was to develop a single dynamic test procedure that is capable of discerning small efficiency differences, and is generally representative of mobile air conditioner usage in the United States. The test was designed to be conducted in existing test facilities, using existing equipment, and within a sufficiently short time to fit standard test facility scheduling. Representative ambient climate conditions for the U.S. were chosen, as well as other test parameters, and a solar load was included.
Technical Paper

Calibrating an Adaptive Pivoting Vane Pump to Deliver a Stepped Pressure Profile

2013-04-08
2013-01-1729
This paper presents a process for the selection of spring rate and pre-load for an adaptively controlled pivoting vane oil pump. The pivoting vane pump has two modes: high and low speed. A spring within the pump is installed to induce a torque that causes an adaptive displacement mechanism within the pump to move toward maximum oil chamber size. In low speed mode, two feedback regions are pressurized that produce torques that counter the spring generated torque. Together, both regions being pressurized by main oil gallery pressure tend to reduce pump displacement more at lower speeds than if only a single chamber is pressurized. At higher speeds, a solenoid switch turns off pressure to one of the feedback pressure chambers, thereby reducing feedback torque that counters spring torque. This enables higher pressure calibrations in this speed mode. In this paper, we identify a process for choosing the spring rate and pre-load that calibrates the adaptive displacement mechanism.
Technical Paper

CAE Simulation of Door Sag/Set Using Subsystem Level Approach

2013-04-08
2013-01-1199
The performance of door assembly is very significant for the vehicle design and door sag/set is one of the important attribute for design of door assembly. This paper provides an overview of conventional approach for door sag/set study based on door-hinge-BIW assembly (system level approach) and its limitation over new approach based on subassembly (subsystem level approach). The door sag/set simulation at system level is the most common approach adopted across auto industry. This approach evaluates only structural adequacy of door assembly system for sag load. To find key contributor for door sagging is always been time consuming task with conventional approach thus there is a delay in providing design enablers to meet the design target. New approach of door sag/set at “subsystem level” evaluates the structural stiffness contribution of individual subsystem. It support for setting up the target at subsystem level, which integrate and regulate the system level performance.
Technical Paper

Assessing the Likelihood of Binding in Distorted Stepped Radius Cylinder Bores

2014-04-01
2014-01-0395
Interference assessments of a stepped-radius power-train component moving within a deformed stepped bore often arise during engine and transmission development activities. For example, when loads are applied to an engine block, the block distorts. This distortion may cause a cam or crankshaft to bind or wear prematurely in its journals as the part rotates within them. Within an automatic transmission valve body, care must be taken to ensure valve body distortion under oil pressure, assembly, and thermal load does not cause spool valves to stick as they translate within the valve body. In both examples, the mechanical scenario to be assessed involves a uniform or stepped radius cylindrical part maintaining a designated clearance through a correspondingly shaped but distorted bore. These distortions can occur in cross-sections (“out-of-round”) or along the bore (in an “s” or “banana” shaped distortions).
Technical Paper

Application of Modeling Technology in a Turbocharged SI Engine

2013-04-08
2013-01-1621
Improvements to 1D engine modeling accuracy and computational speed have led to greater reliance on this simulation technology during the engine development process. The benefits of modeling show up in many ways: increased simulation iterations for better optimization, reduction in prototype hardware iterations, reduction in program timing and overall cost. In this study a 1D GT-Power model of a turbocharged engine system was used to assist in the initial design phase and throughout the program. The model was developed using Chrysler Group LLC proprietary modeling features for predictive combustion and knock event prediction. In all stages of this project the model's accuracy was improved through regular correlation with dynamometer data. This paper mainly focuses on engine compression ratio selection, turbocharger selection, and cycle-to-cycle variation/cylinder-to-cylinder variation reduction through the combination of 1D GT-Power model optimization and dynamometer tests.
Technical Paper

Alternative to Hydrogen/Helium as Flame Ionization Detector Fuel

2013-04-08
2013-01-1045
Flame ionization detector (FID) analyzers used in emission testing to measure total hydrocarbon emissions have been operating for the last forty years on a fuel mixture of 40% H₂ and 60% helium. These mixtures were selected based on research studies reported in the literature indicating that this particular mixed fuel combination gave the best sensitivity and relative response of the different hydrocarbons present in vehicle exhaust with respect to propane, the calibration gas. During the past few years, it was announced that there is a worldwide shortage of helium which triggered the automotive industry to look for alternatives for helium to be used in FID fuels. Helium which is produced as a byproduct from natural gas fields is non-renewable, expensive, and extremely rare on the earth. Current supply cannot keep up with demand. There are only few natural gas fields producing helium and unless new natural gas fields are found, current helium amounts will continue to dwindle.
X