Refine Your Search

Topic

Author

Search Results

Technical Paper

Windage Tray Design Comparison Using Crankcase Breathing Simulation

2013-04-08
2013-01-0580
The conflicting requirements of better fuel economy, higher performance and lower emissions from an automobile engine have brought many new challenges that require development teams to look beyond conventional test and seek answers from simulations. One of the relatively unexplored areas of development where frictional losses haven't been completely understood is the flow in the crankcase. Here computational engineering can play a significant role in analyzing flow field in a hidden and complex region where otherwise testing has serious limitations. Flow simulation in the crankcase poses significant complexity and provides an opportunity to enhance the understanding of underlying physics by using multi-physics analyses tools available commercially. In this study, air space under the piston and above the oil level in oil pan is simulated. It is known that bay-to-bay breathing and windage holes account for considerable amount of power losses in the crankcase.
Technical Paper

Virtual Road Load Data Acquisition using Full Vehicle Simulations

2013-04-08
2013-01-1189
The concept of full vehicle simulation has been embraced by the automobile industry as it is an indispensable tool for analyzing vehicles. Vehicle loads traditionally obtained by road load data acquisition such as wheel forces are typically not invariant as they depend on the vehicle that was used for the measurement. Alternatively, virtual road load data acquisition approach has been adopted in industry to derive invariant loads. Analytical loads prior to building hardware prototypes can shorten development cycles and save costs associated with data acquisition. The approach described herein estimate realistic component load histories with sufficient accuracy and reasonable effort using full vehicle simulations. In this study, a multi-body dynamic model of the vehicle was built and simulated over digitized road using ADAMS software, and output responses were correlated to a physical vehicle that was driven on the same road.
Journal Article

Transient Thermal Analysis of Diesel Fuel Systems

2012-04-16
2012-01-1049
In this paper, a transient thermal analysis model for Diesel fuel systems is presented. The purpose of this work is to determine the fuel temperature at various locations along the system, especially inside the tank and at the returned fuel inlet to the tank. Due to the fact that the fuel level is continuously changing during any driving condition, the fuel mass inside the tank is also continuously changing. Consequently, the fuel temperature will change even under steady driving or idle conditions, therefore, this problem should be analyzed using transient thermal analysis models. Effective thermal management requires controlling the surface temperature of the fuel tank, fuel lines and the fuel temperature at the fuel return line as well as inside the tank [1, 2]. Based on the thermal analysis results, it is possible to determine the major source of heat input at several locations of the fuel system.
Technical Paper

The New Powertrain Virtual Analysis Process in Engine Design and Development

2013-04-08
2013-01-1720
Due to new federal regulations and higher environmental awareness, the market demands for high fuel economy and low exhaust emission engines are increasing. At the same time customer demands for engine performance, NVH and reliability are also increasing. It is a challenge for engineers to design an engine to meet all requirements with less development time. Currently, the new engine development time has been trimmed in order to introduce more products to the market. Utilizing CAE technology and processes in an engine development cycle can enable engineers to satisfy all requirements in a timely and cost-effectively way. This paper describes a new Powertrain Virtual Analysis Process which has been successfully implemented into Chrysler PTCP (Powertrain Creation Process) and effectively utilized to shorten and improve the product development process. This new virtual analysis process guides the product development from concept through the production validation phases.
Technical Paper

The Effects of Catalytic Converter Location and Palladium Loading on Tailpipe Emissions

2012-04-16
2012-01-1247
Meeting regulated tailpipe emission standards requires a full system approach by automotive engineers encompassing: engine design, combustion system metrics, exhaust heat management, aftertreatment design and exhaust system packaging. Engine and combustion system design targets define desired engine out exhaust constituents, exhaust gas temperatures and oil consumption rates. Protecting required catalytic converter volume in the engine bay for stricter tailpipe emission standards is becoming more difficult. Future fuel economy mandates are leading to vehicle downsizing which is affecting all aspects of vehicle component packaging. In this study, we set out to determine the potential palladium (Pd) cost penalty as a result of increased light-off time required as a catalyst is positioned further away from the engine. Two aged converter systems with different Pd loadings were considered, and EPA FTP-75 emission tested at six different catalyst positions.
Technical Paper

Studies on AC Suction Line Pressure Drop using 1D Modeling

2013-04-08
2013-01-1503
In an automotive air-conditioning (AC) system, the amount of work done by the compressor is also influenced by the suction line which meters the refrigerant flow. Optimizing the AC suction line routing has thus become an important challenge and the plumbing designers are required to come up with innovative packaging solutions. These solutions are required in the early design stages when prototypes are not yet appropriate. In such scenarios, one-dimensional (1D) simulations shall be employed to compute the pressure drop for faster and economical solution. In this paper, an approach of creating a modeling tool for suction line pressure drop prediction is discussed. Using DFSS approach L12 design iterations are created and simulations are carried out using 1D AMESim software. Prototypes are manufactured and tested on HVAC bench calorimeter. AC suction line pressure drop predicted using the 1D modeling co-related well with the test data and the error is less than 5%.
Journal Article

Statistical Considerations for Evaluating Biofidelity, Repeatability, and Reproducibility of ATDs

2013-04-08
2013-01-1249
Reliable testing of a mechanical system requires the procedures used for the evaluation to be repeatable and reproducible. However, it is never possible to exactly repeat or reproduce the tests that are used for evaluation. To overcome this limitation, a statistical evaluation procedure can generally be used. However, most of the statistical procedures use scalar values as input without the ability to handle vectors or time-histories. To overcome these limitations, two numerical/statistical methods for determining if the impact time-history response of a mechanical system is repeatable or reproducible are evaluated and elaborated upon. Such a system could be a vehicle, a biological human surrogate, an Anthropometric Test Device (ATD or dummy), etc. The responses could be sets of time-histories of accelerations, forces, moments, etc., of a component or of the system. The example system evaluated is the BioRID II rear impact dummy.
Technical Paper

Smart Meshing Template Process with CAD/CAE Link

2013-04-08
2013-01-0637
The benefits of utilizing virtual engineering include not only shortened product development time and reduced reliance on expensive physical testing, but also the opportunities for greater standardization to support higher product quality. This paper describes a project for building a smart meshing template with a CAD/CAE link. The objective of the project is to optimize the utilization of CAD software and CAE preprocessing software capabilities. The deliverable of the project is a cylinder head mesh template which meets all the cylinder head durability simulation meshing requirements, and which links to CAD/CAE software. Special surface areas identified are built into the cylinder head CAD model design. By using one of the features in CAD software, all the special surfaces can be automatically updated throughout the design process.
Technical Paper

Simplified Approach of Chassis Frame Optimization for Durability Performance

2014-04-01
2014-01-0399
In recent trend, there is a huge demand for lightweight chassis frame, which improves fuel efficiency and reduces cost of the vehicle. Stiffness based optimization process is simple and straightforward while durability (life) based optimizations are relatively complex, time consuming due to a two-step (Stress then life) virtual engineering process and complicated loading history. However, durability performances are critical in chassis design, so a process of optimization with simplified approach has been developed. This study talks about the process of chassis frame weight optimization without affecting current durability performance where complex durability load cases are converted to equivalent static loadcases and life targets are cascaded down to simple stress target. Sheet metal gauges and lightening holes are the parameters for optimization studies. The optimization design space is constrained to chassis unique parts.
Technical Paper

Shape Recovery Simulation of Flexible Airdam

2013-04-08
2013-01-0166
Airdam is an aerodynamic component in automobile and is designed to reduce the drag and increase fuel efficiency. It is also an important styling component. The front airdam below the bumper is to direct the air flow away from the front tires and towards the underbody, where the drag coefficient becomes less. The flexible airdam is made of Santoprene™ - thermoplastic vulcanizates (TPV), which belongs to thermoplastic elastomer (TPE) family. When a vehicle is parked over a parking block, the flexible airdam will be under strain subjected to bending load from the parking block. If the airdam is kept under constant strain for a certain period, a set will occur and the force will decay over a period of time. Due to the force decay, the stress will reduce and this behavior is called as stress relaxation.
Journal Article

Reducing Radiated Structural Noise from AIS Surfaces using Several FEM Optimization Methods

2013-04-08
2013-01-0997
Two finite element optimization techniques are presented for minimizing automotive engine air induction structural radiated noise and mass. Air induction systems are generally made of thin wall plastic which is exposed to high levels of pulsating engine noise. Weak air induction system walls vibrate excessively creating noise that can be heard by the driver. The conventional approach is to add ribs (many times through trial and error) which increase part weight or by adding “kiss-offs,” which restrict air flow. The finite element optimization methods considered here are shape optimization and topometry optimization. Genesis, a fully integrated finite element analysis and optimization package by Vanderplaats Research & Development, was used to perform finite element optimization. Choice of optimization method is primarily dependent on several factors which are appearance, part interference and flow restriction requirements.
Journal Article

Random Vibration Testing Development for Engine Mounted Products Considering Customer Usage

2013-04-08
2013-01-1007
In this paper, the development of random vibration testing schedules for durability design verification of engine mounted products is presented, based on the equivalent fatigue damage concept and the 95th-percentile customer engine usage data for 150,000 miles. Development of the 95th-percentile customer usage profile is first discussed. Following that, the field engine excitation and engine duty cycle definition is introduced. By using a simplified transfer function of a single degree-of-freedom (SDOF) system subjected to a base excitation, the response acceleration and stress PSDs are related to the input excitation in PSD, which is the equivalent fatigue damage concept. Also, the narrow-band fatigue damage spectrum (FDS) is calculated in terms of the input excitation PSD based on the Miner linear damage rule, the Rayleigh statistical distribution for stress amplitude, a material's S-N curve, and the Miles approximate solution.
Book

Principles of Vibration Analysis with Applications in Automotive Engineering

2011-01-10
This book, written for practicing engineers, designers, researchers, and students, summarizes basic vibration theory and established methods for analyzing vibrations. Principles of Vibration Analysis goes beyond most other texts on this subject, as it integrates the advances of modern modal analysis, experimental testing, and numerical analysis with fundamental theory. No other book brings all of these topics together under one cover. The authors have compiled these topics, compared them, and provided experience with practical application. This must-have book is a comprehensive resource that the practitioner will reference time and again.
Journal Article

Optimizing Electric Vehicle Battery Life through Battery Thermal Management

2011-04-12
2011-01-1370
In order to define and to optimize a thermal management system for a high voltage vehicular battery, it is essential to understand the environmental factors acting on the battery and their influence on battery life. This paper defines a calendar life aging model for a battery, and applies real world environmental and operating conditions to that model. Charge and usage scenarios are combined with various cooling/heating approaches. This set of scenarios is then applied to the calendar life model, permitting optimization of battery thermal management strategies. Real-world battery life can therefore be maximized, and trade-offs for grid energy conversion efficiency and fuel economy/vehicle range can be determined.
Journal Article

Optimization of a Porous Ducted Air Induction System Using Taguchi's Parameter Design Method

2014-04-01
2014-01-0887
Taguchi method is a technology to prevent quality problems at early stages of product development and product design. Parameter design method is an important part in Taguchi method which selects the best control factor level combination for the optimization of the robustness of product function against noise factors. The air induction system (AIS) provides clean air to the engine for combustion. The noise radiated from the inlet of the AIS can be of significant importance in reducing vehicle interior noise and tuning the interior sound quality. The porous duct has been introduced into the AIS to reduce the snorkel noise. It helps with both the system layout and isolation by reducing transmitted vibration. A CAE simulation procedure has been developed and validated to predict the snorkel noise of the porous ducted AIS. In this paper, Taguchi's parameter design method was utilized to optimize a porous duct design in an AIS to achieve the best snorkel noise performance.
Technical Paper

Optimization of HVAC Panel Aiming Studies using Parametric Modeling and Automated Simulation

2014-04-01
2014-01-0684
In an Automotive air conditioning system, the air flow distribution in the cabin from the HVAC (Heating, ventilation and air conditioning), ducts and outlets is evaluated by the velocity achieved at driver and passenger mannequin aim points. Multiple simulation iterations are being carried out before finalizing the design of HVAC panel duct and outlets until the target velocity is achieved. In this paper, a parametric modeling of the HVAC outlet is done which includes primary and secondary vane creation using CATIA. Java macro files are created for simulation runs in STAR CCM+. ISIGHT is used as an interface tool between CATIA and STARCCM+. The vane limits of outlet and the target velocity to be achieved at mannequin aim points are defined as the boundary conditions for the analysis. Based on the optimization technique and the number of iterations defined in ISIGHT, the vane angle model gets updated automatically in CATIA followed by the simulation runs in STARCCM+.
Technical Paper

Multi-Dimensional Modeling and Validation of Combustion in a High-Efficiency Dual-Fuel Light-Duty Engine

2013-04-08
2013-01-1091
Using gasoline and diesel simultaneously in a dual-fuel combustion system has shown effective benefits in terms of both brake thermal efficiency and exhaust emissions. In this study, the dual-fuel approach is applied to a light-duty spark ignition (SI) gasoline direct injection (GDI) engine. Three combustion modes are proposed based on the engine load, diesel micro-pilot (DMP) combustion at high load, SI combustion at low load, and diesel assisted spark-ignition (DASI) combustion in the transition zone. Major focus is put on the DMP mode, where the diesel fuel acts as an enhancer for ignition and combustion of the mixture of gasoline, air, and recirculated exhaust gas. Computational fluid dynamics (CFD) is used to simulate the dual-fuel combustion with the final goal of supporting the comprehensive optimization of the main engine parameters.
Technical Paper

Integrated Virtual Approach for Optimization of Vehicle Sensitivity to Brake Torque Variation

2013-04-08
2013-01-0596
Brake judder is a brake induced vibration that a vehicle driver experiences in the steering wheel or floor panel at highway speeds during vehicle deceleration. The primary cause of this disturbance phenomenon is the brake torque variation (BTV). Virtual CAE tools from both kinematics and compliance standpoints have been applied in analyzing sensitivities of the vehicle systems to BTV. This paper presents a recently developed analytical approach that identifies parameters of steering and suspension systems for achieving optimal settings that desensitize the vehicle response to BTV. The analytical steps of this integrated approach started with creating a lumped mass noise-vibration-harshness (NVH) control model and a separate multi-body dynamics (MBD) suspension model. Then, both models were linked to run in a sequence through optimization software so the results from the MBD model were used as quasi-static inputs to the lumped mass NVH model.
Technical Paper

Impact of Functional Safety on EMC: ISO 26262

2013-04-08
2013-01-0178
The complexity of both hardware and software has increased significantly in automotive over the past decade. This is apparent even in the compact passenger car market segment where the presence of electronic control units (ECU) has nearly tripled. In today's luxury vehicles, software can reach 100 million lines of code and are only projected to increase. Without preventive measures, the risk of safety-related system malfunction becomes unacceptably too high. The functional safety standard ISO 26262, released as first edition in 2011, provides crucial safety-related requirements for passenger vehicles. Although the standard defines the proper development for safety-related systems to ensure the avoidance of a hazard, it's implication for electromagnetic compatibility (EMC) is not clearly defined. This paper outlines the impact of ISO 26262 for EMC related issues, and discusses the standard's implications for EMC requirements on the present EMC practices for production vehicles.
Technical Paper

Impact of Ethanol Fuels on Regulated Tailpipe Emissions

2012-04-16
2012-01-0872
Flexible fuel vehicle production has been steadily increasing in the US over the past fifteen years. Ethanol is considered a renewable fuel additive to gasoline which helps the US efforts in minimizing the dependency on foreign oil. As a result, it is becoming very hard to find pure gasoline which does not contain some ethanol content at the pump in the US. The fuel currently available at the pump contains close to 10% ethanol. The fuel and evaporative systems components and materials on newer flexible fuel vehicles are being designed to be tolerant of the 10% ethanol content. There is a strong desire from ethanol producers to increase the ethanol content up to a 20% level. This is still being debated by the Environmental Protection Agency and a final decision has not been made yet but will be announced by the upcoming Tier 3 Notice of Public Rule Making (NPRM) in December of 2011.
X