Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Simplified Approach of Chassis Frame Optimization for Durability Performance

2014-04-01
2014-01-0399
In recent trend, there is a huge demand for lightweight chassis frame, which improves fuel efficiency and reduces cost of the vehicle. Stiffness based optimization process is simple and straightforward while durability (life) based optimizations are relatively complex, time consuming due to a two-step (Stress then life) virtual engineering process and complicated loading history. However, durability performances are critical in chassis design, so a process of optimization with simplified approach has been developed. This study talks about the process of chassis frame weight optimization without affecting current durability performance where complex durability load cases are converted to equivalent static loadcases and life targets are cascaded down to simple stress target. Sheet metal gauges and lightening holes are the parameters for optimization studies. The optimization design space is constrained to chassis unique parts.
Technical Paper

Optimization of MAC Side Window Demister Outlet by Parametric Modelling through DFSS Approach

2015-04-14
2015-01-0363
In recent years clearing the mist on side windows is one of the main criterions for all OEMs for providing comfort level to the person while driving. Visibility through the side windows will be poor when the mist is not cleared to the desired level. “Windows fog up excessively/don't clear quickly” is one of the JD Power question to assess the customer satisfaction related to HVAC performance. In a Mobile Air Conditioning System, HVAC demister duct and outlet plays an important role for removing the mist formation on vehicle side window. Normally demister duct and outlet design is evaluated by the target airflow and velocity achieved at driver and passenger side window. The methodology for optimizing the demister outlet located at side door trim has been discussed. Detailed studies are carried out for creating a parametric modeling and optimization of demister outlet design for meeting the target velocity.
Technical Paper

Design For Six Sigma (DFSS) for Optimization of Stamping Simulation Parameters to Improve Springback Prediction

2015-04-14
2015-01-0582
Springback prediction for stamped components is a challenging task for Automotive Industry. Automotive Manufacturers are working to reduce the springback effect of sheet metal stampings caused due to elastic behavior of materials with the help of changes to manufacturing process and part geometry. Recent development in Finite Element Analysis (FEA) studies made it possible for the industry to rely on stamping simulation. There is always a gap between the springback predicted from stamping simulation and the actual stamped part. Currently FEA techniques are trying to close this gap. The objective of this study is to minimize this gap using DFSS method for predicting the springback and optimizing the simulation parameters with the help of LS-Dyna FEM tool. The behavior of material with different simulation parameters has been studied in this paper and the ones that best correlate with actual data are identified.
Technical Paper

CAE Based Development of an Ejection Mitigation (FMVSS 226) SABIC using Design for Six Sigma (DFSS) Approach

2015-04-14
2015-01-1473
NHTSA issued the FMVSS 226 ruling in 2011. It established test procedures to evaluate countermeasures that can minimize the likelihood of a complete or partial ejection of vehicle occupants through the side windows during rollover or side impact events. One of the countermeasures that may be used for compliance of this safety ruling is the Side Airbag Inflatable Curtain (SABIC). This paper discusses how three key phases of the optimization strategy in the Design for Six Sigma (DFSS), namely, Identify; Optimize and Verify (I_OV), were implemented in CAE to develop an optimized concept SABIC with respect to the FMVSS 226 test requirements. The simulated SABIC is intended for a generic SUV and potentially also for a generic Truck type vehicle. The improved performance included: minimization of the test results variability and the optimization of the ejection mitigation performance of the SABIC.
Technical Paper

CAC Plumbing Lines Inner Medium Pressure Drop 1D Model Optimization

2015-01-14
2015-26-0195
The Charge Air Cooler (CAC) is designed to cool the charge air after being boosted by the Turbocharger. In order to maintain the optimum temperature and to further improve the charge air density entering to the engine the CAC is used. This makes the combustion more efficient and better engine performance and fuel economy. The performance of the CAC is highly affected by the plumbing lines which transport the compressed charge air from turbocharger to the intake manifold of the Engine. It consists of tube, hose, duct and resonator. Designing the optimum CAC plumbing lines with lesser pressure drop is the major requirement of the CAC system considering the complex packaging. In such scenarios, one-dimensional (1D) simulation is a good way to compute the pressure drop for faster and economical solution.
X