Refine Your Search

Topic

Search Results

Viewing 1 to 17 of 17
Technical Paper

The Effects of Roll Control for Passenger Cars during Emergency Maneuvers

1994-03-01
940224
A nonlinear eight degree of freedom vehicle model has been used to examine the effects of roll stiffness on handling and performance. In addition, various control strategies have been devised which vary the total roll couple distribution in order to improve cornering capability and stopping distance. Of all cases tested, a controller which varies the total roll stiffness based on roll angle feedback, and continuously updates the roll couple distribution as a function of steering wheel angle, braking input, and the total roll stiffness, yields the greatest improvements in collision avoidance.
Technical Paper

The Effects of Local Spring Perch Flexibility on Suspension Geometry of a Winston Cup Race Car

1998-11-16
983032
In order to achieve predictable handling of a race car, local mounts connecting suspension components to the chassis should be sufficiently rigid to minimize unwanted local deflection which may adversely affect suspension geometry. In this work, the effects of local chassis flexibility of the spring perch on roll stiffness, tire camber change, and steer angle change are determined from a finite element model (FEM) of a Winston Cup race car. Details such as side gussets, supporting brackets, and local curvature of the frame rail spring pocket are included in a shell model of the spring perch. The local shell model of the spring perch is integrated with the global finite element stiffness model of the chassis and suspension consisting of an assembly of beam and shell elements. A parametric study on the effects of thickness changes for seven different areas of the spring perch has been performed.
Technical Paper

The Effects of Chassis Flexibility on Roll Stiffness of a Winston Cup Race Car

1998-11-16
983051
Predictable handling of a racecar may be achieved by tailoring chassis stiffness so that roll stiffness between sprung and unsprung masses are due almost entirely to the suspension. In this work, the effects of overall chassis flexibility on roll stiffness and wheel camber response, will be determined using a finite element model (FEM) of a Winston Cup racecar chassis and suspension. The FEM of the chassis/suspension is built from an assembly of beam and shell elements using geometry measured from a typical Winston cup race configuration. Care has been taken to model internal constraints between degrees-of-freedom (DOF) at suspension to chassis connections, e.g. t ball and pin joints and internal releases. To validate the model, the change in wheel loads due to an applied jacking force that rolls the chassis agrees closely with measured data.
Technical Paper

Simulation and Evaluation of Semi-Active Suspensions

1994-03-01
940864
A simulation of the vertical response of a nonlinear 1/4 car model consisting of a sprung and an unsprung mass was developed. It is being used for preliminary evaluation of various suspension configurations and control algorithms. Nonlinearities include hysteretic shock damping and switchable damping characteristics. Road inputs include discrete events such as bumps and potholes as well as randomly irregular roads having specified power spectral densities (PSDs). Fast Fourier transform data analysis procedures are used to process data from the simulation to obtain PSDs, rms values, and histograms of various response quantities. To aid in assessing ride comfort, the 1/3 octave band rms acceleration of the sprung mass is calculated and compared with specifications suggested by the International Standards Organization (ISO). Cross plots of the rms values of acceleration, suspension travel, and the force of the road on the tire are used to compare the performance of various suspensions.
Technical Paper

Saturation Balancing Control for Enhancing Dynamic Stability of Vehicles with Independent Wheel Drives

2011-04-12
2011-01-0982
This paper proposes a new vehicle stability control method that quantifies and uses the level of lateral force saturation on each axle/wheel of a vehicle. The magnitude of the saturation, which can be interpreted as a slip-angle deficiency, is determined from on-line estimated nonlinear tire lateral forces and their linear projections that use estimates of the cornering stiffness. Once known, the saturation levels are employed in a saturation balancing control structure that biases the drive torque to either the front or rear axles/wheels with the goal of minimizing excessive under- or over-steer, thereby stabilizing the vehicle. The method is particularly suited for a vehicle with an independent wheel drive system. Furthermore, the method can be used in conjunction with a direct yaw-moment controller to obtain enhanced stability and responsiveness.
Technical Paper

Roll Stability Control for Torsionally Compliant Vehicles

2010-04-12
2010-01-0102
Rollover prevention is now part of complete vehicle stability control systems for many vehicles. Given that rollover is predominantly associated with vehicles with high centers of gravity, the targeted vehicles for rollover protection include medium and heavy duty commercial vehicles. Unfortunately, the chassis designs of these vehicles are often so compliant in torsion that the ends of the vehicles may have significantly different roll responses at any given time. The potential need to assess and correct for the roll behavior of the front and rear ends of the vehicle is the subject of this paper. Most rollover mitigation research to date has used rigid chassis assumptions in modeling the vehicle. This paper deals with the roll control of vehicles with torsionally flexible chassis based on a yaw-correction system.
Technical Paper

Procedure for the Characterization of Friction in Automobile Power Steering Systems

1996-02-01
960933
In developing a nonlinear steering system model for vehicle simulation, it was determined that proper inclusion of system friction is necessary to correctly predict steering wheel torque response in on-center driving using simulation models. A method to characterize the inherent friction behavior for a given steering gear has been developed and performed on two types of power steering gears: a recirculating ball gear and a rack-and-pinion gear. During this research it was discovered that levels of static and dynamic friction can differ widely for these two types. Therefore this characterization procedure provides a method to ascertain both static and dynamic friction levels. The results from these tests show that friction levels can depend on steering gear input shaft position, steering gear input angular velocity and steering gear loading conditions.
Journal Article

Hydrostatic Wheel Drives for Vehicle Stability Control

2010-04-12
2010-01-0105
Hydrostatic (hydraulic hybrid) drives have demonstrated energy efficiency and emissions reduction benefits. This paper investigates the potential of an independent hydrostatic wheel drive system for implementing a traction-based vehicle lateral stability control system. The system allows an upper level vehicle stability controller to produce a desired corrective yaw moment via a differential distribution of torque to the independent wheel motors. In cornering maneuvers that require braking on any one wheel of the vehicle, the motors can be operated as pumps for re-generating energy into an on-board accumulator. This approach avoids or reduces activation of the friction brakes, thereby reducing energy waste as heat in the brake pads and offering potential savings in brake maintenance costs. For this study, a model of a 4×4 hydrostatic independent wheel drive system is constructed in a causal and modular fashion and is coupled to a 7 DOF vehicle handling dynamics model.
Technical Paper

Finite Element Simulation of Ring Rolling Process

2010-04-12
2010-01-0270
Three-dimensional simulation has become an indispensable approach to develop improved understanding of ring rolling technology, with validity as the basic requirement of the ring rolling simulation. Cold ring rolling is simple conceptually, however complex to analyze as the metal forming process is subject to coupled effects with multiple influencing factors such as sizes of rolls and ring blank, form geometry, material, process parameters, and frictional effects. Investigating the coupled thermal and plastic deformation behavior (the plastic deformation state and its development) in the deformation zone during the process is significant for predicting metal flow in order to control the geometric and tensile residual stress quality of deformed rings, and to provide for cycle time optimization of the cold ring rolling process.
Technical Paper

Effects of Cellular Shear Bands on Interaction between a Non-pneumatic Tire and Sand

2010-04-12
2010-01-0376
To facilitate the design of a non-pneumatic tire for NASA's new Moon mission, the authors used the Finite Element Method (FEM) to investigate the interaction between soil and non-pneumatic tire made of different cellular shear bands. Cellular shear bands, made of an aluminum alloy (AL7075-T6), are designed to have the same effective shear modulus of 6.5E+6 Pa, which is the shear modulus of an elastomer. The Lebanon sand of New Hampshire is used in the model. This sand has a complete set of material properties in the literature and Drucker-Prager/Cap plasticity constitutive law with hardening is employed to model the sand. The tires are treated as deformable bodies, and the authors used the penalty contact algorithm to model the tangential behavior of the contact. The friction between tire and sand is considered by using Coulomb's law. Numerical results show deformation of sand and tire.
Technical Paper

Development and Qualitative Testing of Traction Concepts as an Undergraduate Experience

2010-04-12
2010-01-0312
Recent research at Clemson University has focused on the development of an advanced non-pneumatic, non-elastomeric lunar wheel for NASA with superior traction. This paper reports on several concepts for tread materials and geometries that have been explored for tire-on-sand use. Specifically, fourteen concepts, involving the use of metal meshes, textile carpet materials, soft grousers, foams, and screens, were physically tested in an on-vehicle environment. Prototypes for each concept and formal test procedures to quantify traction were developed. This paper presents the results of the tests for several different concepts and the comparison between the concepts that were developed. Students developed their own testing environment through which these test procedures are implemented, an inclined hill 45 ft. in length and 8 ft. wide will approximately 6 inches deep filled with sand.
Book

Biocomposites in Automotive Applications

2015-08-13
The automotive sector has taken a keen interest in lightweighting as new required performance standards for fuel economy come into place. This strategy includes parts consolidation, design optimization, and material substitution, with sustainable polymers playing a major role in reducing a vehicle’s weight. Sustainable polymers are largely biodegradable, biocompatible, and sourced from renewable plant and agricultural stocks. A facile way to enhance their properties, so they can indeed replace the ones made from fossil fuels, is by reinforcing them with fibers to make composites. Natural fibers are gaining more acceptance in the industry due to their renewable nature, low cost, low density, low energy consumption, high specific strength and stiffness, CO2 sequestration potential, biodegradability, and less wear imposed on machinery. Biocomposites then become a very feasible way to help address the fuel consumption challenge ahead of us.
Technical Paper

An Investigation of the Pulse Steer Method for Determining Automobile Handling Qualities

1993-03-01
930829
The use of pulse steering tests for assessment of handling qualities was investigated using a simulation of a comprehensive, nonlinear four wheel model of an automobile. Evaluations were conducted using frequency response functions of yaw rate and lateral acceleration obtained by FFT processing of the simulated response. In addition, as suggested by the work of Mimuro et al [1], four parameters (steady state yaw rate gain, yaw rate natural frequency and damping ratio, and lateral acceleration phase lag at 1 Hz) that characterize these response functions were also obtained by curve fitting techniques. The effects on accuracy of the response functions and the four parameters of variations in pulse shape, duration, and magnitude were investigated. Results from the simulated pulse steer test were compared with those from simulated swept sine steering tests.
Technical Paper

An Investigation of the Effects of Roll Control on Handling and Stability of Passenger Vehicles During Severe Lane Change Maneuvers

1995-02-01
950305
The control of body roll on passenger vehicles can be used as a tool for controlling the “weight shift” that occurs during maneuvering. Distribution of load to the tires will determine the ability of each tire to generate lateral forces required for the maneuver and thus will significantly affect handling. In this investigation, the effects on weight shift and hence, on handling, of total roll stiffness, front to rear roll stiffness distribution, total roll damping, and roll damping distribution were examined. These results were then used to guide the development and analysis of several roll control algorithms. The results of the investigation indicate that roll control can be effective in improving handling and stability. However, simulation of the control algorithms showed that the controllers must be specifically tuned for the vehicle in which they are to be used.
Technical Paper

An Improved Seating Accommodation Model for Older and Younger Drivers

2016-04-05
2016-01-1444
The research objective was to measure and understand the preferred seat position of older drivers and younger drivers within their personal vehicles to influence recommended practices and meet the increased safety needs of all drivers. Improper selection of driver’s seat position may impact safety during a crash event and affect one’s capacity to see the roadway and reach the vehicle’s controls, such as steering wheel, accelerator, brake, clutch, and gear selector lever. Because of the stature changes associated with ageing and the fact that stature is normally distributed for both males and females, it was hypothesized that the SAE J4004 linear regression would be improved with the inclusion of gender and age terms that would provide a more accurate model to predict the seat track position of older drivers. Participants included 97 older drivers over the age of 60 and 20 younger drivers between the ages of 30 to 39.
Journal Article

A Model-Free Stability Control Design Scheme with Active Steering Actuator Sets

2016-04-05
2016-01-1655
This paper presents the application of a proposed fuzzy inference system as part of a stability control design scheme implemented with active steering actuator sets. The fuzzy inference system is used to detect the level of overseer/understeer at the high level and a speed-adaptive activation module determines whether an active front steering, active rear steering, or active 4 wheel steering is suited to improve vehicle handling stability. The resulting model-free system is capable of minimizing the amount of model calibration during the vehicle stability control development process as well as improving vehicle performance and stability over a wide range of vehicle and road conditions. A simulation study will be presented that evaluates the proposed scheme and compares the effectiveness of active front steer (AFS) and active rear steer (ARS) in enhancing the vehicle performance. Both time and frequency domain results are presented.
Journal Article

A Fuzzy Inference System for Understeer/Oversteer Detection Towards Model-Free Stability Control

2016-04-05
2016-01-1630
In this paper, a soft computing approach to a model-free vehicle stability control (VSC) algorithm is presented. The objective is to create a fuzzy inference system (FIS) that is robust enough to operate in a multitude of vehicle conditions (load, tire wear, alignment), and road conditions while at the same time providing optimal vehicle stability by detecting and minimizing loss of traction. In this approach, an adaptive neuro-fuzzy inference system (ANFIS) is generated using previously collected data to train and optimize the performance of the fuzzy logic VSC algorithm. This paper outlines the FIS detection algorithm and its benefits over a model-based approach. The performance of the FIS-based VSC is evaluated via a co-simulation of MATLAB/Simulink and CarSim model of the vehicle under various road and load conditions. The results showed that the proposed algorithm is capable of accurately indicating unstable vehicle behavior for two different types of vehicles (SUV and Sedan).
X