Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Strain Rate Effect on Martensitic Transformation in a TRIP Steel Containing Carbide-Free Bainite

Adiabatic heating during plastic straining can slow the diffusionless shear transformation of austenite to martensite in steels that exhibit transformation induced plasticity (TRIP). However, the extent to which the transformation is affected over a strain rate range of relevance to automotive stamping and vehicle impact events is unclear for most third-generation advanced high strength TRIP steels. In this study, an 1180MPa minimum tensile strength TRIP steel with carbide-free bainite is evaluated by measuring the variation of retained austenite volume fraction (RAVF) in fractured tensile specimens with position and strain. This requires a combination of servo-hydraulic load frame instrumented with high speed stereo digital image correlation for measurement of strains and ex-situ synchrotron x-ray diffraction for determination of RAVF in fractured tensile specimens.
Technical Paper

Numerical Investigation of an Optical Soot Sensor for Modern Diesel Engines

It has been extensively evidenced that modern diesel engines generate a considerable amount of soot nanoparticles. Existing soot sensors are not suitable for such nanoparticles. Current standard gravimetric techniques are extremely insensitive to fine soot particles. Soot diagnostics developed for research purposes, e.g., laser induced-incandescence, do not provide quantitative characterization, and expanded practical applications of these techniques are hardly conceivable. This paper addresses this emerging need for monitoring nano-sized soot emissions. Here, we investigated the use of polarization modulated scattering (PMS) for soot sensing in engine environments. The technique involves 1) measuring laser scattering by soot particles at multiple angles while varying the polarization states of the incident laser beam, 2) determining multiple elements of the Mueller matrix from the measured signals, and 3) inferring properties of the soot particles from these elements.
Technical Paper

Modeling and Learning of Object Placing Tasks from Human Demonstrations in Smart Manufacturing

In this paper, we present a framework for the robot to learn how to place objects to a workpiece by learning from humans in smart manufacturing. In the proposed framework, the rational scene dictionary (RSD) corresponding to the keyframes of task (KFT) are used to identify the general object-action-location relationships. The Generalized Voronoi Diagrams (GVD) based contour is used to determine the relative position and orientation between the object and the corresponding workpiece at the final state. In the learning phase, we keep tracking the image segments in the human demonstration. For the moment when a spatial relation of some segments are changed in a discontinuous way, the state changes are recorded by the RSD. KFT is abstracted after traversing and searching in RSD, while the relative position and orientation of the object and the corresponding mount are presented by GVD-based contours for the keyframes.
Technical Paper

Effects of Condenser Two-Phase Flow Characteristics on a Capillary Pumped Loop

One of the intrinsic characteristics found in CPL operation is the oscillatory behavior of the pressure drop, even noted under seemingly steady operation. This study focused on the role of the condensing process and its intrinsic instabilities upon the differential pressure oscillations recorded in the CPL. Through an analytical study of condensing instabilities and an experimental study based on the correlation between pressure records and condensing flow visualization, the impact of slug flow phenomenon occurring in the condensing path was investigated. High amplitude oscillations were seen to be linked with liquid slug phenomena in the way that slug striking the final vapor-liquid interface generated pressure pulses.
Technical Paper

Detection of Presence and Posture of Vehicle Occupants Using a Capacitance Sensing Mat

Capacitance sensing is the technology that detects the presence of nearby objects by measuring the change in capacitance. A change in capacitance is triggered either by a change in dielectric constant, area of overlap or distance of separation between the electrodes of the capacitor. It is a technology that finds wide use in applications such as touch screens, proximity sensing etc. Drawing motivation from such applications, this paper investigates how capacitive sensing can be employed to detect the presence and posture of occupants inside vehicles. Compared to existing solutions, the proposed approach is low-cost, easy to deploy and highly efficient. The sensing system consists of a capacitance-sensing mat that is embedded with copper foils and an associated sensing circuitry. Inside the mat the foils are arranged in rows and columns to form several touch-nodes across the surface of the mat.
Journal Article

Conceptual Development of Automotive Forward Lighting System Using White Light Emitting Diodes

This paper focuses on redesigning the headlamp subsystem functional architecture. The design involves meeting three major functional requirements: Achieving the lumen requirements according to Economic Commission for Europe (ECE) 324 regulations, Meeting the illumination pattern, and Maintaining the Light Emitting Diode’s (LED) junction temperature at 90°C. White LEDs are considered in the design to satisfy the functional requirements due to their high lumen efficacy, compact size, and long life. These benefits, when compared to existing headlight systems benchmarked, present enough potential to warrant further conceptual virtual prototyping. The prototyping focused on solutions that allowed control of sizing and numbering of LEDs, illumination pattern limits, and temperature to achieve the multiple functions a dynamic headlight system. A primary challenge in this design is to maintain the LED’s junction temperature within a recommended operational range.
Technical Paper

Combined Synchrotron X-Ray Diffraction and Digital Image Correlation Technique for Measurement of Austenite Transformation with Strain in TRIP-Assisted Steels

The strain-induced diffusionless shear transformation of retained austenite to martensite during straining of transformation induced plasticity (TRIP) assisted steels increases strain hardening and delays necking and fracture leading to exceptional ductility and strength, which are attractive for automotive applications. A novel technique that provides the retained austenite volume fraction variation with strain with improved precision is presented. Digital images of the gauge section of tensile specimens were first recorded up to selected plastic strains with a stereo digital image correlation (DIC) system. The austenite volume fraction was measured by synchrotron X-ray diffraction from small squares cut from the gage section. Strain fields in the squares were then computed by localizing the strain measurement to the corresponding region of a given square during DIC post-processing of the images recorded during tensile testing.