Refine Your Search

Topic

Search Results

Technical Paper

Wear Resistance of Lunar Wheel Treads Made of Polymeric Fabrics

2009-04-20
2009-01-0065
The purpose of this research is to characterize the wear resistance of wheel treads made of polymeric woven and non-woven fabrics. Experimental research is used to characterize two wear mechanisms: (1) external wear due to large sliding between the tread and rocks, and (2) external wear due to small sliding between the tread and abrasive sand. Experimental setups include an abrasion tester and a small-scale merry-go-round where the tread is attached to a deformable rolling wheel. The wear resistance is characterized using various measures including, quantitatively, by the number of cycles to failure, and qualitatively, by micro-visual inspection of the fibers’ surface. This paper describes the issues related to each experiment and discusses the results obtained with different polymeric materials, fabric densities and sizes. The predominant wear mechanism is identified and should then be used as one of the criteria for further design of the tread.
Technical Paper

Varying Intake Stroke Injection Timing of Wet Ethanol in LTC

2020-04-14
2020-01-0237
Computational Fluid Dynamics (CFD) modeling was used to investigate the effects of the direct injection of wet ethanol at various injection timings during the intake stroke in a diesel engine with a shallow bowl piston. Thermally Stratified Compression Ignition (TSCI) has been proposed to expand the operating range of Low Temperature Combustion (LTC) by broadening the temperature distribution in the cylinder prior to ignition. TSCI is accomplished by injecting either water or a water-fuel mixture with a high latent heat of vaporization like wet ethanol. This current study focuses on isolating the effects that injecting such a high heat of vaporization mixture during the intake stroke has on the distribution of temperature and equivalence ratio in the cylinder before the onset of combustion. A CONVERGE 3-D CFD model of a single cylinder diesel research engine using Reynolds Averaged Naiver Stokes (RANS) turbulence modeling was developed and validated against experimental data.
Technical Paper

Use of Cellphones as Alternative Driver Inputs in Passenger Vehicles

2019-04-02
2019-01-1239
Automotive drive-by-wire systems have enabled greater mobility options for individuals with physical disabilities. To further expand the driving paradigm, a need exists to consider an alternative vehicle steering mechanism to meet specific needs and constraints. In this study, a cellphone steering controller was investigated using a fixed-base driving simulator. The cellphone incorporated the direction control of the vehicle through roll motion, as well as the brake and throttle functionality through pitch motion, a design that can assist disabled drivers by excluding extensive arm and leg movements. Human test subjects evaluated the cellphone with conventional vehicle control strategy through a series of roadway maneuvers. Specifically, two distinctive driving situations were studied: a) obstacle avoidance test, and b) city road traveling test. A conventional steering wheel with self-centering force feedback tuning was used for all the driving events for comparison.
Technical Paper

Testing a Formula SAE Racecar on a Seven-Poster Vehicle Dynamics Simulator

2002-12-02
2002-01-3309
Vehicle dynamics simulation is one of the newest and most valuable technologies being applied in the racing world today. Professional designers and race teams are investing heavily to test and improve the dynamics of their suspension systems through this new technology. This paper discusses the testing of one of Clemson University's most recent Formula SAE racecars on a seven-poster vehicle dynamics simulator; commonly known as a “shaker rig.” Testing of the current dampers using a shock dynamometer was conducted prior to testing and results are included for further support of conclusions. The body of the paper is a discussion of the setup and testing procedures involved with the dynamic simulator. The results obtained from the dynamic simulator tests are then analyzed in conjunction with the shock dynamometer results. Conclusions are formed from test results and methods for future improvements to be applied in Formula SAE racing are suggested.
Technical Paper

Numerical Evaluation of Injection Parameters on Transient Heat Flux and Temperature Distribution of a Heavy-Duty Diesel Engine Piston

2024-04-09
2024-01-2688
A major concern for a high-power density, heavy-duty engine is the durability of its components, which are subjected to high thermal loads from combustion. The thermal loads from combustion are unsteady and exhibit strong spatial gradients. Experimental techniques to characterize these thermal loads at high load conditions on a moving component such as the piston are challenging and expensive due to mechanical limitations. High performance computing has improved the capability of numerical techniques to predict these thermal loads with considerable accuracy. High-fidelity simulation techniques such as three-dimensional computational fluid dynamics and finite element thermal analysis were coupled offline and iterated by exchanging boundary conditions to predict the crank angle-resolved convective heat flux and surface temperature distribution on the piston of a heavy-duty diesel engine.
Technical Paper

Modeling the Effect of Thermal Barrier Coatings on HCCI Engine Combustion Using CFD Simulations with Conjugate Heat Transfer

2019-04-02
2019-01-0956
Thermal barrier coatings with low conductivity and low heat capacity have been shown to improve the performance of homogeneous charge compression ignition (HCCI) engines. These coatings improve the combustion process by reducing heat transfer during the hot portion of the engine cycle without the penalty thicker coatings typically have on volumetric efficiency. Computational fluid dynamic simulations with conjugate heat transfer between the in-cylinder fluid and solid piston of a single cylinder HCCI engine with exhaust valve rebreathing are carried out to further understand the impacts of these coatings on the combustion process. For the HCCI engine studied with exhaust valve rebreathing, it is shown that simulations needed to be run for multiple engine cycles for the results to converge given how sensitive the rebreathing process is to the residual gas state.
Technical Paper

Lap Time Simulation of Stock Cars on Super Speedways with Random Wind Gusts

2004-11-30
2004-01-3509
This paper describes the development of a simplified model and simulation of a stock car subjected to both steady and random winds on a super speedway. Results indicate how lap times are affected by design and operational parameters and by winds. The simulation models a super speedway such as Talladega or Daytona. Inputs to the simulation include wind speed, wind direction, speed of wind gusts, and the duration and frequency of wind gusts. The program will output both total elapsed time and segregated times per each track section. Also, along with elapsed times, the output will include other characteristics pertaining to the performance of the car that allow the user to obtain a basic understanding of the general performance of the car. This paper will show how the car was modeled. Results for both head winds and crosswinds are shown.
Journal Article

Integration of Autonomous Vehicle Frameworks for Software-in-the-Loop Testing

2020-04-14
2020-01-0709
This paper presents an approach for performing software in the loop testing of autonomous vehicle software developed in the Autoware framework. Autoware is an open source software for autonomous driving that includes modules such as localization, detection, prediction, planning and control [8]. Multitudes of autonomous driving frameworks exist today, each having its own pros and cons. Often, MATLAB-Simulink is used for rapid prototyping, system modeling and testing, specifically for the lower-level vehicle dynamics and powertrain control features. For the autonomous software, the Robotic Operating System (ROS) is more commonly used for integrating distributed software components so that they can easily share information through a publish and subscribe paradigm. Thorough testing and evaluation of such complex, distributed software, implemented on a physical vehicle poses significant challenges in terms of safety, time, and cost, especially when considering rare edge cases.
Technical Paper

Independent Torque Distribution Strategies for Vehicle Stability Control

2009-04-20
2009-01-0456
This paper proposes and compares torque distribution management strategies for vehicle stability control (VSC) of vehicles with independently driven wheels. For each strategy, the following feedback control variables are considered turn by turn: 1) yaw rate 2) lateral acceleration 3) both yaw rate and lateral acceleration. Computer simulation studies are conducted on the effects of road friction conditions, feedback controller gains, and a driver emulating speed controller. The simulation results indicated that all VSC torque management strategies are generally very effective in tracking the reference yaw rate and lateral acceleration of the vehicle on both dry and slippery surface conditions. Under the VSC strategies employed and the test conditions considered, the sideslip angle of the vehicle remained very small and always below the desired or target values.
Technical Paper

IC Engine Intake Region Design Modifications for Loss Reduction Based on CFD Methods

1998-02-23
981026
Computational fluid dynamics methods are applied to the intake regions of a diesel engine in the design stage at Caterpillar. Using a complete, tested and validated computational methodology, fully viscous 3-D turbulent flow simulations are performed for three valve lifts, with the goal of identifying and understanding the physics underlying loss in the intake regions of IC engines. The results of these simulations lead to several design improvements in the intake region. These improvements are made to the computational domain, and flow simulations are again performed at three different valve lifts. Improvements in overall total pressure loss of between 5% and 33% are found in the computed results between the original and modified (improved) domains. Physical mechanisms responsible for these improvements are documented in detail.
Journal Article

Fuzzy Logic Approach to Vehicle Stability Control of Oversteer

2011-04-12
2011-01-0268
Traditional Electronic Stability Control (ESC) for automobiles is usually accomplished through the use of estimated vehicle dynamics from simplified models that rely on parameters such as cornering stiffness that can change with the vehicle state and time. This paper proposes a different method for electronic stability control of oversteer by predicting the degree of instability in a vehicle. The algorithm is solely based on measurable response characteristics including lateral acceleration, yaw rate, speed, and driver steering input. These signals are appropriately conditioned and evaluated with fuzzy logic to determine the degree of instability present. When the “degree of instability” passes a certain threshold, the appropriate control action is applied to the vehicle in the form of differential yaw braking. Using only the measured response of the vehicle alleviates the problem of degraded performance when vehicle parameters change.
Technical Paper

Fidelity of Vehicle Models Using Roll Center Principles

2000-03-06
2000-01-0693
The ‘roll center’ concept has existed in vehicle dynamics for decades. However, its application is not commonly well understood. This paper considers roll center concepts in the modeling of a planar (front view) twin-beam suspension. Two roll center models are developed and compared to a third model, developed from the Lagrangian method without reference to a roll center. In addition to discussion of the equations of motion, analysis includes simulation of a ‘cornering’ maneuver. The effects of tire vertical stiffness, jacking forces, and nonlinear kinematics are investigated. Conclusions are drawn regarding the usefulness and accuracy of the roll center modeling.
Technical Paper

Effects of Port Angle on Scavenging of an Opposed Piston Two-Stroke Engine

2022-03-29
2022-01-0590
Opposed-piston 2-stroke (OP-2S) engines have the potential to achieve higher thermal efficiency than a typical diesel engine. However, the uniflow scavenging process is difficult to control over a wide range of speeds and loads. Scavenging performance is highly sensitive to pressure dynamics, port timings, and port design. This study proposes an analysis of the effects of port vane angle on the scavenging performance of an opposed-piston 2-stroke engine via simulation. A CFD model of a three-cylinder opposed-piston 2-stroke was developed and validated against experimental data collected by Achates Power Inc. One of the three cylinders was then isolated in a new model and simulated using cycle-averaged and cylinder-averaged initial/boundary conditions. This isolated cylinder model was used to efficiently sweep port angles from 12 degrees to 29 degrees at different pressure ratios.
Technical Paper

Effects of Injector Included Angle on Low-Load Low Temperature Gasoline Combustion Using LES

2023-04-11
2023-01-0270
A novel advanced combustion strategy that employs the kinetically controlled compression ignition of gasoline whose autoignition is sensitive to fuel concentration is termed Low Temperature Gasoline Combustion. The LTGC method can achieve high thermal efficiency with a commercially available fuel while generating ultra-low soot and NOx emissions relative to the conventional combustion modes. At high loads, a double direct injection (D-DI) strategy is used where the first injection generates a background premixed charge while a second compression stroke injection controls the level of fuel stratification on a cycle-to-cycle basis to manage the heat release rates. With lower loads, this combustion performance of this D-DI strategy decreases as the background charge becomes increasingly lean. Instead, a single direct injection (S-DI) is used at lower loads to maintain an adequate combustion efficiency.
Technical Paper

Design of an Open-Loop Steering Robot Profile for Double Lane Change Maneuver Using Simulation

2010-04-12
2010-01-0096
This paper presents a methodology for designing a simple open-loop steering robot profile to simulate a double lane change maneuver for track testing of a heavy tractor/trailer combination vehicle. For track testing of vehicles in a lane change type of maneuver, a human driver is typically used with a desired path defined with visual cues such as traffic cones. Such tests have been shown to result in poor test repeatability due to natural variation in driver steering behavior. While a steering robot may be used to overcome this repeatability issue, such a robot typically implements open-loop maneuvers and cannot be guaranteed to cause the vehicle to accurately follow a pre-determined trajectory. This paper presents a method using offline simulation to design an open-loop steering maneuver resulting in a realistic approximation of a double lane change maneuver.
Journal Article

Data Reduction Methods to Improve Computation Time for Calibration of Piston Thermal Models

2023-04-11
2023-01-0112
Fatigue analysis of pistons is reliant on an accurate representation of the high temperatures to which they are exposed. It can be difficult to represent this accurately, because instrumented tests to validate piston thermal models typically include only measurements near the piston crown and there are many unknown backside heat transfer coefficients (HTCs). Previously, a methodology was proposed to aid in the estimation of HTCs for backside convection boundary conditions of a stratified charge compression ignition (SCCI) piston. This methodology relies on Bayesian inference of backside HTC using a co-simulation between computational fluid dynamics (CFD) and finite element analysis (FEA) solvers. Although this methodology primarily utilizes the more computationally efficient FEA model for the iterations in the calibration, this can still be a computationally expensive process.
Technical Paper

Data Driven Vehicle Dynamics System Identification Using Gaussian Processes

2024-04-09
2024-01-2022
Modeling uncertainties pose a significant challenge in the development and deployment of model-based vehicle control systems. Most model- based automotive control systems require the use of a well estimated vehicle dynamics prediction model. The ability of first principles-based models to represent vehicle behavior becomes limited under complex scenarios due to underlying rigid physical assumptions. Additionally, the increasing complexity of these models to meet ever-increasing fidelity requirements presents challenges for obtaining analytical solutions as well as control design. Alternatively, deterministic data driven techniques including but not limited to deep neural networks, polynomial regression, Sparse Identification of Nonlinear Dynamics (SINDy) have been deployed for vehicle dynamics system identification and prediction.
Technical Paper

Computational Method to Examine Spoke Dynamics in a High Speed Rolling Wheel

2009-04-20
2009-01-0071
This paper describes a computational approach to investigating spoke vibrations in cast polyurethane spoked wheels during high-speed rolling. It focuses on four aspects: 1) Creating a two-dimensional finite element model of a cast polyurethane rolling wheel which is in contact with a rigid plane to observe the spoke vibrations. 2) Investigating the effect of rolling speed on the observed spoke vibrations. 3) Investigating the effect of spoke thickness on spoke vibration frequencies. 4) Creating a three-dimensional spoke model to investigate spoke vibrations which exhibit both symmetric and anti-symmetric out-of-plane modes.
Technical Paper

Bonding Strength Modeling of Polyurethane to Vulcanized Rubber

2009-04-20
2009-01-0605
Tires manufactured from polyurethane (PU) have been espoused recently for reduced hysteretic loss, but the material provides poor traction or poor wear resistance in the application, requiring inclusion of a traditional vulcanized rubber tread at the contact surface. The tread can be attached by adhesive methods after the PU body is cured, or the PU can be directly cured to reception sites on the rubber chain molecules unoccupied by crosslinked (vulcanizing) sulfur atoms. This paper provides a study of the two bonding options, both as-manufactured and after dynamic loading representative of tire performance in service. Models of each process are introduced, and an experimental comparison of the bonding strength between each method is made. Results are applied to tire fatigue simulation.
Technical Paper

Assessing the Impact of a Novel TBC Material on Heat Transfer in a Spark Ignition Engine through 3D CFD-FEA Co-Simulation Routine

2022-03-29
2022-01-0402
Thermal barrier coatings (TBCs) have been of interest since the 1970s for application in internal combustion (IC) engines. Thin TBCs exhibit a temperature swing phenomenon wherein wall temperatures dynamically respond to the transient working-gas temperature throughout the engine cycle, thus reducing the temperature difference driving the heat transfer. Determining these varying wall temperatures is necessary to evaluate and study the effect of coatings on wall heat transfer. This study focuses on developing a 3D computational fluid dynamics (CFD)-finite element analysis (FEA) coupled simulation, or co-simulation, routine to determine the wall temperatures of a piston coated with a thin TBC layer subject to spark ignition combustion heat flux. A CONVERGE 3D-CFD model was used to simulate the combustion process in a single-cylinder, light-duty experimental spark ignition (SI) engine.
X