Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Substrate/Washcoat Interaction in Thin Wall Ceramic Substrates

1999-01-13
990013
Stringent emissions standards for HC, CO and NOx have necessitated the development of thin wall ceramic substrates which offer higher surface area, larger open frontal area and lower thermal mass. Such substrates offer the additional benefit of being compact which make them ideal for manifold mounting in the engine compartment. These attributes of ceramic substrates, following washcoat and catalyst application, translate directly into quick light-off, high conversion efficiency and low back pressure. To preserve these advantages at high operating temperature and still meet 100,000 mile vehicle durability, the thermomechanical interaction between the substrate and thin wall washcoat system must be managed carefully via formulation, % loading and the calcination process. This paper presents the physical properties data for thin wall ceramic substrates before and after the washcoat application.
Technical Paper

Durability and Performance of Thin Wall Ceramic Substrates

1999-01-13
990011
The stringent emissions standards in the late 1990's like NLEV, ULEV and SULEV have led to major modifications in the composition and design of ceramic substrates. These changes have been necessitated to reduce cold start emissions, meet OBD-II requirements, and to ensure 100,000 mile durability requirement in a cost-effective manner. This paper presents the key advances in ceramic substrates which include lower thermal expansion, lighter weight, higher surface area and improved manufacturing process all of which help meet performance requirements. In addition to above benefits, the compressive and tensile strengths of lightweight substrates, as well as their thermal shock resistance, are found to be adequate following the application of high surface area alumina washcoat. The strength properties are crucial for ensuring safe handling of the substrate during coating and canning and for its long term mechanical durability in service.
X