Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

The Lubricity Requirement of Low Sulfur Diesel Fuels

1994-10-01
942015
An engine rig test and a scuffing BOCLE test have been used to investigate the lubricity of low sulfur diesel fuels and its relationship with unit injector wear in heavy duty diesel engines. The rig test effectively ranks 11 selected fuels/fluids according to their actual performance. The scuffing BOCLE test correlates with the rig test by showing the same ranking capability, and it is easy to perform. A similar correlation has been established using ISO reference fuels. The scuffing BOCLE test has been used to study 37 fuels randomly sampled from the field. The data shows that there is indeed a reduction in lubricity of low sulfur fuels. The variation in lubricity of low sulfur fuels is also much greater than high sulfur fuels. Data in this study shows that transition from good to poor lubricity usually occurs between 2500 to 3000 grams in the scuffing BOCLE.
Technical Paper

Survey of Winter '93 Low Sulphur Diesel Fuels in the U.S.

1994-10-01
942013
Reports of disabling diesel engine seal failures which accompanied the introduction of low sulfur diesel fuel in October '93 prompted an in-depth survey of diesel fuel chemical and physical properties. The purpose of the survey was to anticipate other possible problems which might arise with the newly introduced low sulfur fuels. The survey will produce a database containing over 1000 number 2 diesel fuels from various parts of the US. About 75% of the samples tested were on-highway low sulfur diesel fuels. Samples analyzed were from the D-A Lubricant Company, Cummins customers failures (truck fleets of various sizes), and a number of retail fueling stations. Properties under investigation are % Sulfur, Cloud/Pour Points, Viscosity, API Gravity, TAN/TBN, Boiling Range, Aromatics content, Heat Content, Lubricity, and Peroxide number.
Technical Paper

Scuff Resistance Rig Test for Piston Ring Face Coatings

1997-02-24
970819
A laboratory method has been developed to rank the scuff resistance of piston ring coatings. This method employs a standard wear test apparatus with a specially designed sample holder. Scuff resistance of electrolytic chrome, thermal spray and physical vapor deposition (PVD) face coatings have been examined. Based on this method, examined PVD coatings produced the highest scuff resistance of all the tested face coatings.
Technical Paper

Reduced Cross Section Compression Rings for Diesel Engines

1997-02-24
971146
Compression rings for heavy duty diesel engines are traditionally made of ductile cast iron material. These rings, in general, have conservative standard dimensions limited by the strength of their base material. More recently, however, the market for heavy duty diesel engines demanded products able to cope with high levels of power density and, at the same time, lower levels of oil consumption, friction, and emissions. This paper discusses the advantages of some radical changes made on the design of compression rings in order to take advantage of steel as the base material. The superior mechanical properties of steel allow the use of rings with smaller cross sections which minimizes the friction losses caused by the combustion gas pressure pushing the ring against the liner. It also allows the use of compression rings with a free gap significantly larger than usual.
Technical Paper

Prediction of Radiated Noise from Engine Components Using the BEM and the Rayleigh Integral

1997-05-20
971954
This paper examines the feasibility of using the boundary element method (BEM) and the Rayleigh integral to assess the sound radiation from engine components such as oil pans. Two oil pans, one cast aluminum and the other stamped steel, are used in the study. All numerical results are compared to running engine data obtained for each of these oil pans on a Cummins engine. Measured running-engine surface velocity data are used as input to the BEM calculations. The BEM models of the oil pains are baffled in various ways to determine the feasibility of analyzing the sound radiated from the oil pan in isolation of the engine. Two baffling conditions are considered: an infinite baffle in which the edge of the oil pan are attached to an infinite, flat surface; and a closed baffle in which the edge of the oil pan is sealed with a rigid structure. It is shown that either of these methods gives satisfactory results when compared to experiment.
Technical Paper

Plastic Oil Rings for Diesel Engines: A Preliminary Evaluation

1996-02-01
960049
The ability of a piston oil ring to conform to liner distortions during engine operation is directly related to its radial stiffness. The ability to conform is also very important for controlling lubricant oil consumption and emissions. This paper describes the procedure utilized to investigate the technical feasibility of using flexible high performance engineering plastics to replace metal as base material for oil rings. Bench tests and engines were used to select and evaluate different types of plastics for wear resistance and structural integrity. Engine test results indicated no structural failures but wear levels were found to be unacceptably high for use in durable heavy duty diesel engines.
Technical Paper

Performance of a Ceramic Rotor in a Cummins T46 Turbocharger

1984-02-01
840014
This paper documents the successful operation of a modified Cummins T46 turbocharger with a ceramic rotor. This turbocharger is modified to incorporate a 4.6 inch diameter ceramic turbine rotor (pressureless sintered silicon nitride) on the hot end. These results document the most complete ceramic turbine rotor performance map, for a large ceramic turbocharger rotor, available to date.
Technical Paper

HVOF Cermet Coatings for High Horse Power Diesel Engines

1997-02-24
970817
High Velocity Oxygen Fuel sprayed face coatings have shown great promise for piston rings used for High Power Density Diesel Engines. Various coatings have been tested on both wear test rigs and in engines. A highly dense HVOF cermet coating was developed with reasonable crack resistance during service. The HVOF coated piston rings wore three to six times lower than chrome plating. Cylinder liner (counter face) wear was found to be one to three times higher than chrome. However, engine oil consumption and blow by were within normal values. The HVOF coating is considered to be an excellent replacement for chrome plating. The coating process is more environmentally friendly than the chrome plating process. Also, the coating has potentially lower or equivalent production cost when compared to chrome.
Technical Paper

Exploring PVD Coatings for Cylinder Liner Applications

2001-03-05
2001-01-0573
A number of wear resistant coatings has been developed using physical vapor deposition(PVD) process. However this coating process has not yet been widely used in the automotive industry. The purpose of this work was to evaluate thin PVD coatings such as diamond like carbon doped with tungsten (W-DLC), molybdenum-disulfide doped with aluminum (MoS2-Al), and chrome nitride (CrN). Some of these coatings were previously found to have low friction, high wear resistance, or both when tested in unlubricated conditions. In the present work, the experiments were conducted using a Cameron-Plint apparatus in lubricated conditions. The ring counterfaces used were Cr-plated and gas-nitrided compression rings. Our data also indicated that some PVD coatings with thicknesses in the same order of magnitude as the surface roughness of the liners did show some improvement in liner wear resistance. The suitability of thin coatings for liner applications needs additional study.
Technical Paper

Effects of Exhaust Gas Recirculation on the Degradation Rates of Lubricating Oil in a Heavy-Duty Diesel Engine

1999-10-25
1999-01-3574
The specific goal of this project was to determine if there is a difference in the lube oil degradation rates in a heavy-duty diesel engine equipped with an EGR system, as compared to the same configuration of the engine, but minus the EGR system. A secondary goal was to develop FTIR analysis of used lube oil as a sensitive technique for rapid evaluation of the degradation properties of lubricants. The test engine selected for this work was a Caterpillar 3176 engine. Two engine configurations were used, a standard 1994 design and a 1994 configuration with EGR designed to meet the 2004 emissions standards. The most significant changes in the lubricant occurred during the first 50-100 hours of operation. The results clearly demonstrated that the use of EGR has a significant impact on the degradation of the engine lubricant.
Technical Paper

Development of a Bench Test to Detect Oils Corrosive to Engine Components

1994-03-01
940790
Corrosive wear of non-ferrous engine components by lubricants is a concern of all major heavy duty diesel engine manufacturers since warranty on key engine components has been extended to 500,000 miles. Several commercial lubricants have been linked to premature cam and rod bearing failures induced by corrosion in certain fleets. Although the overall failure rate is low, specific fleets have experienced significantly higher failure rates due to the lubricants used. These failures usually occur at high mileages but less than 500,000 miles. This kind of slow corrosion easily escapes detection of engine tests contained in current oil specifications, and it represents a serious issue in long term warranty cost to diesel engine manufacturers. A comprehensive fleet database has been established to identify the most corrosive lubricants. These lubricants have served as reference oils to develop a corrosion bench test.
Technical Paper

Changes in Elastomer Swell with Diesel Fuel Composition

1994-10-01
942017
Reports of disabling elastomer seal failures across a wide range of diesel equipment, which accompanied the introduction of low sulfur diesel fuel in October '93 prompted an in-depth investigation of low sulfur diesel fuel chemical speciation. The objective of this work was to gain a better understanding of how low sulfur fuels had changed to cause this problem. Mass Spectroscopy (MS) and seal swell data were obtained on a broad geographical sampling of low sulfur diesel fuels obtained during the 4th quarter of '93. Previously available high sulfur (0.25%) data were available for comparison. Elastomer seal swell data were obtained in pure component blends and also in fuels which had caused field failures. Using these data it was possible to determine which fuel components or lack thereof may contribute most heavily to seal swell failures. Further, compression set data were obtained for a number of commonly used fuel system elastomers in a fuel which caused field problems.
X