Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Reducing Compression Brake Noise

1997-05-20
971870
A survey is made of compression brake noise levels in heavy duty diesel trucks, using test procedures based on the ISO and EPA driveby acceleration noise tests. The data shows that compression brake noise levels are very high if worn out or open stack exhaust systems are used. Compression brake noise is also audible with OEM exhaust systems and, in at least one case, potentially objectionable. Two methods for reducing brake noise are investigated: improved mufflers and the use of an exhaust brake with the compression brake. Both techniques demonstrate a potential for reducing compression brake noise.
Technical Paper

Plastic Oil Rings for Diesel Engines: A Preliminary Evaluation

1996-02-01
960049
The ability of a piston oil ring to conform to liner distortions during engine operation is directly related to its radial stiffness. The ability to conform is also very important for controlling lubricant oil consumption and emissions. This paper describes the procedure utilized to investigate the technical feasibility of using flexible high performance engineering plastics to replace metal as base material for oil rings. Bench tests and engines were used to select and evaluate different types of plastics for wear resistance and structural integrity. Engine test results indicated no structural failures but wear levels were found to be unacceptably high for use in durable heavy duty diesel engines.
Technical Paper

J366 Driveby Variability

1995-05-01
951357
The EPA Heavy Truck Driveby Noise test is used to regulate trucks over 10,000 pounds GVW. The EPA test procedure is based on SAE J366. The EPA/J366 procedure is used both as a regulatory compliance tool and as a development tool. When the test procedure is used as a development tool, the goal is to determine the most cost effective means of meeting the legal requirement. Since J366 was not intended as a development tool, it can be difficult or misleading to use it to make decisions on product configuration. In order to use J366 successfully in vehicle or engine development, one must understand and properly account for the inherent variability of the J366 driveby test procedure. This paper examines both the extent and some of the sources of J366 driveby test variability. Strategies are proposed to ensure the proper interpretation of test results. Several repeat tests are required to accurately determine a small change in driveby noise level.
Technical Paper

Effects of Exhaust Gas Recirculation on the Degradation Rates of Lubricating Oil in a Heavy-Duty Diesel Engine

1999-10-25
1999-01-3574
The specific goal of this project was to determine if there is a difference in the lube oil degradation rates in a heavy-duty diesel engine equipped with an EGR system, as compared to the same configuration of the engine, but minus the EGR system. A secondary goal was to develop FTIR analysis of used lube oil as a sensitive technique for rapid evaluation of the degradation properties of lubricants. The test engine selected for this work was a Caterpillar 3176 engine. Two engine configurations were used, a standard 1994 design and a 1994 configuration with EGR designed to meet the 2004 emissions standards. The most significant changes in the lubricant occurred during the first 50-100 hours of operation. The results clearly demonstrated that the use of EGR has a significant impact on the degradation of the engine lubricant.
Technical Paper

Developing a Test Procedure for Compression Brake Noise

1997-05-20
972038
In this paper, a procedure for the measurement of noise produced by compression brakes on heavy duty trucks is proposed and evaluated. The test procedure is an adaptation of the ISO exterior vehicle noise regulation, ISO 362, to measure compression brake noise. The test consists of two parts, a driveby test and a stationary brake test, which are both developed to accentuate compression brake noise. The proposed test is demonstrated to provide results that are indicative of on-road compression brake noise. The sensitivity of the test results to variations in several test parameters is also examined.
Technical Paper

A Comparison of Modified Elevated Temperature HFRR Test Data With Scuffing BOCLE Results

1996-10-01
961946
Evolving diesel engine design trends are expected to include fuel systems operating at significantly higher pressures and temperatures than in the past. Accordingly, meaningful laboratory tests are needed to help guide this development. Two candidate test methods were evaluated in this exploratory study. Scuffing Load Ball-on Cylinder Lubricity Evaluator (BOCLE) and Modified High-Frequency Reciprocating Rig (HFRR) test results covering a range of operating temperatures were compared with fuel property data. Correlations of the Modified HFRR test data with BOCLE results were also made.
X