Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

The Cummins A3.4-125: A Charge Cooled IDI Turbo Diesel for the 1991 US Light-Heavy Duty Market

1990-09-01
901570
The Cummins A3.4-125 (rated 93 kW at 3600 rpm) has been developed to meet 1991 US and California light-heavy duty emission standards, replacing the Cummins 6AT3.4 (formerly Onan L634T-A). Compliance with the stringent particulate standard has been achieved by redesigning the combustion chamber, a systematic oil control program, and charge air cooling. The Ricardo Comet combustion chamber was modified to a downstream glowplug configuration. Oil control efforts addressed all sources of oil derived particulate. With charge air cooling, NOx emissions were reduced while improving fuel economy, torque output, altitude capability, and engine durability. THE CUMMINS A3.4-125 is an evolutionary development of the 1988-90 6AT3.4 engine. The development was driven primarily by 1991 US and California light-heavy duty emission standards, but also was the result of a policy of continuous product improvement. The Cummins A Series diesel engine family was conceived as the Onan L Series (1*).
Technical Paper

Effect of Diesel Fuel Properties on Emissions and Performance

1974-02-01
740692
Tests were conducted with several production diesel engines and one prototype low-emission diesel engine to determine the effect of fuel properties on exhaust emissions and engine performance. Fuel cetane number was found to be the most significant fuel property; low cetane fuels resulted in higher hydrocarbons and oxides of nitrogen and increased noise. Conversely, higher cetane fuels produced lower emissions and noise, and also improved engine starting characteristics. The degree of these effects was influenced by engine configuration. Although engine design changes can result in substantial emissions reduction, fuel properties can also influence achieveable levels.
X