Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Multivariable Control of Dual Loop EGR Diesel Engine with a Variable Geometry Turbo

2014-04-01
2014-01-1357
In this paper we consider the issues facing the design of a practical multivariable controller for a diesel engine with dual exhaust gas recirculation (EGR) loops. This engine architecture requires the control of two EGR valves (high pressure and low pressure), an exhaust throttle (ET) and a variable geometry turbocharger (VGT). A systematic approach suitable for production-intent air handling control using Model Predictive Control (MPC) for diesel engines is proposed. Furthermore, the tuning process of the proposed design is outlined. Experimental results for the performance of the proposed design are implemented on a 2.8L light duty diesel engine. Transient data over an LA-4 cycle for the closed loop performance of the controller are included to prove the effectiveness of the proposed design process.
Technical Paper

Automotive Selective Catalytic Reduction System Model-Based Estimators for On-ECU Implementation: A Brief Overview

2016-04-05
2016-01-0972
The amount of ammonia stored on the walls of the catalyst (or ammonia storage) is a parameter with significant impact on NOx reduction efficiency and undesired ammonia slip of Selective Catalytic Reduction catalysts. This makes the ammonia storage interesting for utilization in urea injection control. However, ammonia storage is not directly measurable onboard vehicles, it can only be estimated. Model-based online estimation requires models that are capable of capturing the main phenomena of the SCR and at the same time can be computed onboard vehicle. While the modeling of SCR and model-based control is well present in the literature, it is apparent that few attempts of implementing the models on production ECUs were published. This paper reviews literature on ammonia storage, outlet NH3 and NOx concentration estimation in SCR and SCR/DPF systems-including the estimation of NOx sensor cross-sensitive to NH3-in order to present the state of the art.
X