Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Drive by Noise System and Corresponding Facility Upgrades for Test Efficiency, Data Quality and Customer Satisfaction

2011-05-17
2011-01-1611
An existing pass by noise data acquisition system was upgraded to provide the sophisticated data analysis techniques and test site efficiency required to comply with the current and future drive by noise regulations. Use of six sigma tool such as voice of the customer helped in defining the customer requirements which were then translated into the desired engineering characteristics using QFD. Pugh concept matrix narrowed down the best option suitable for the test site modifications taking into account the critical constraints such as test complexity, system cost & transparency to the existing drive by noise setup. Features of the new system include data telemetry, frequency analysis, portability and efficient data management through the use of advanced data acquisition system. Wireless mode of the data transmission helped significantly avoid most of the test site modifications, which in turn helped to reduce the overall system implementation cost.
Technical Paper

Analytical Evaluation of Integrated Drivetrain NVH Phenomena

2015-09-29
2015-01-2781
This paper demonstrates the use of a system level model that includes torsional models of a Cummins diesel engine and an Allison transmission to study and improve system NVH behavior. The study is a case where the two suppliers of key powertrain components, Cummins Inc. and Allison Transmission Inc., have collaborated to solve an observed NVH problem for a vehicle customer. A common commercial tool, Siemens' AMESim, was used to develop the drivetrain torsional system model. This paper describes a method of modelling and calibration of baseline engine and transmission models to identify the source of vibration. Natural frequencies, modal shapes, and forced response were calculated for each vehicle drive gear ratio to study the torsional vibration. Several parametric studies such as damping, inertia, and stiffness were carried out to understand their impact on torsional vibration of the system.
Journal Article

An Engine and Powertrain Mapping Approach for Simulation of Vehicle CO2 Emissions

2015-09-29
2015-01-2777
Simulations used to estimate carbon dioxide (CO2) emissions and fuel consumption of medium- and heavy-duty vehicles over prescribed drive cycles often employ engine fuel maps consisting of engine measurements at numerous steady-state operating conditions. However, simulating the engine in this way has limitations as engine controls become more complex, particularly when attempting to use steady-state measurements to represent transient operation. This paper explores an alternative approach to vehicle simulation that uses a “cycle average” engine map rather than a steady state engine fuel map. The map contains engine CO2 values measured on an engine dynamometer on cycles derived from vehicle drive cycles for a range of generic vehicles. A similar cycle average mapping approach is developed for a powertrain (engine and transmission) in order to show the specific CO2 improvements due to powertrain optimization that would not be recognized in other approaches.
X