Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Why Cu- and Fe-Zeolite SCR Catalysts Behave Differently At Low Temperatures

2010-04-12
2010-01-1182
Cu- and Fe-zeolite SCR catalysts emerged in recent years as the primary candidates for meeting the increasingly stringent lean exhaust emission regulations, due to their outstanding activity and durability characteristics. It is commonly known that Cu-zeolite catalysts possess superior activity to Fe-zeolites, in particular at low temperatures and sub-optimal NO₂/NOx ratios. In this work, we elucidate some underlying mechanistic differences between these two classes of catalysts, first based on their NO oxidation abilities, and then based on the relative properties of the two types of exchanged metal sites. Finally, by using the ammonia coverage-dependent NOx performance, we illustrate that state-of-the-art Fe-zeolites can perform better under certain transient conditions than in steady-state.
Technical Paper

Vehicle Duty Cycle Characteristics for Hybrid Potential Evaluation

2012-09-24
2012-01-2023
A range of cycle characteristics have been used to estimate the hybrid potential for vehicle duty cycles including characteristic acceleration, aerodynamic velocity, kinetic intensity, stop time, etc. These parameters give an indication of overall hybrid potential benefits, but do not contain information on the distribution of the available braking energy and the hybrid system power required to capture the braking energy. In this paper, the authors propose two new cycle characteristics to help evaluate overall hybrid potential of vehicle cycles: P50 and P90, which are non-dimensional power limits at 50% and 90% of available braking energy. These characteristics are independent of vehicle type, and help illustrate the potential hybridization benefit of different drive cycles. First, the distribution of available braking energy as a function of brake power for different vehicle cycles and vehicle classes is analyzed.
Journal Article

Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines

2013-04-08
2013-01-0282
Light duty vehicle emission standards are getting more stringent than ever before as stipulated by US EPA Tier 2 Standards and LEV III regulations proposed by CARB. The research in this paper sponsored by US DoE is focused towards developing a Tier 2 Bin 2 Emissions compliant light duty pickup truck with class leading fuel economy targets of 22.4 mpg “City” / 34.3 mpg “Highway”. Many advanced technologies comprising both engine and after-treatment systems are essential towards accomplishing this goal. The objective of this paper would be to discuss key engine technology enablers that will help in achieving the target emission levels and fuel economy. Several enabling technologies comprising air-handling, fuel system and base engine design requirements will be discussed in this paper highlighting both experimental and analytical evaluations.
Technical Paper

The Prediction of Connecting Rod Fretting and Fretting Initiated Fatigue Fracture

2004-10-25
2004-01-3015
The influence of big-end bore fretting on connecting rod fatigue fracture is investigated. A finite element model, including rod-bearing contact interaction, is developed to simulate a fatigue test rig where the connecting rod is subjected to an alternating uniaxial load. Comparison of the model results with a rod fracture from the fatigue rig shows good correlation between the fracture location and the peak ‘Ruiz’ criterion, rather than the peak tensile stress location, indicating the potential of fretting to initiate a fatigue fracture and the usefulness of the ‘Ruiz’ criterion as a measure of location and severity. The model is extended to simulate a full engine cycle using pressure loads from a bearing EHL analysis. A fretting map and a ‘Ruiz’ criterion map are developed for the full engine cycle, giving an indication of a safe ‘Ruiz’ level from an existing engine which has been in service for more than 5 years.
Technical Paper

The New 1.0l Supercharger Zetec RoCam Engine

2002-11-19
2002-01-3438
The current Brazilian tax legislation promotes vehicles, powered by engines with up to 1.0l displacement. In order to offer the customer an engine with the maximum tax advantage, a supercharged derivative of the Ford 1.0l Zetec RoCam engine was developed. The market specific boundary conditions in South America require powertrains with immediate response especially at low engine speeds. This can be achieved by a supercharged engine concept. The paper discusses the required engine modifications for the supercharger application. The combustion system was changed to benefit from the higher volumetric efficiency, including the optimisation of the intake, exhaust and bypass control system. Extensive modifications of the base engine were required to adapt the engine to the higher thermal load and the specific boundary condition of a supercharger application.
Technical Paper

The Impact of Lubricant and Fuel Derived Sulfur Species on Efficiency and Durability of Diesel NOx Adsorbers

2004-10-25
2004-01-3011
Global emission legislations for diesel engines are becoming increasingly stringent. While the exhaust gas composition requirements for prior iterations of emission legislation could be met with improvements in the engine's combustion process, the next issue of European, North American and Japanese emission limits greater than 2005 will require more rigorous measures, mainly employment of exhaust gas aftertreatment systems. As a result, many American diesel OEMs are considering NOx adsorbers as a means to achieve 2007+ emission standards. Since the efficacy of a NOx adsorber over its lifetime is significantly affected by sulfur (“sulfur poisoning”), forthcoming reductions in diesel fuel sulfur (down to 15 ppm), have raised industry concerns regarding compatibility and possible poisoning effects of sulfur from the lubricant.
Journal Article

The Impact of Ammonium Nitrate Species on Low Temperature NOx Conversion Over Cu/CHA SCR Catalyst

2017-03-28
2017-01-0953
Cu/CHA catalysts have been widely used in the industry, due to their desirable performance characteristics including the unmatched hydrothermal stability. While broadly recognized for their outstanding activity at or above 200°C, these catalysts may not show desired levels of NOx conversion at lower temperatures. To achieve high NOx conversions it is desirable to have NO2/NOx close to 0.5 for fast SCR. However even under such optimal gas feed conditions, sustained use of Cu/CHA below 200°C leads to ammonium nitrate formation and accumulation, resulting in the inhibition of NOx conversion. In this contribution, the formation and decomposition of NH4NO3 on a commercial Cu/CHA catalyst have been investigated systematically. First, the impact of NH4NO3 self-inhibition on SCR activity as a function of temperature and NO2/NOx ratios was investigated through reactor testing.
Technical Paper

The Effects of Thermal Degradation on the Performance of a NOX Storage/Reduction Catalyst

2009-04-20
2009-01-0631
The performance characteristics of a commercial lean-NOX trap catalyst were evaluated between 200 and 500°C, using H2, CO, and a mixture of both H2 and CO as reductants before and after different high-temperature aging steps, from 600 to 750°C. Tests included NOX reduction efficiency during cycling, NOX storage capacity (NSC), oxygen storage capacity (OSC), and water-gas-shift (WGS) and NO oxidation reaction extents. The WGS reaction extent at 200 and 300°C was negatively affected by thermal degradation, but at 400 and 500°C no significant change was observed. Changes in the extent of NO oxidation did not show a consistent trend as a function of thermal degradation. The total NSC was tested at 200, 350 and 500°C. Little change was observed at 500°C with thermal degradation but a steady decrease was observed at 350°C as the thermal degradation temperature was increased.
Technical Paper

The Application of Acoustic Radiation Modes to Engine Oil Pan Design

2017-06-05
2017-01-1844
In modern engine design, downsizing and reducing weight while still providing an increased amount of power has been a general trend in recent decades. Traditionally, an engine design with superior NVH performance usually comes with a heavier, thus sturdier structure. Therefore, modern engine design requires that NVH be considered in the very early design stage to avoid modifications of engine structure at the last minute, when very few changes can be made. NVH design optimization of engine components has become more practical due to the development of computer software and hardware. However, there is still a need for smarter algorithms to draw a direct relationship between the design and the radiated sound power. At the moment, techniques based on modal acoustic transfer vectors (MATVs) have gained popularity in design optimization for their good performance in sound pressure prediction.
Journal Article

Systematic Development of Highly Efficient and Clean Engines to Meet Future Commercial Vehicle Greenhouse Gas Regulations

2013-09-24
2013-01-2421
With increasing energy prices and concerns about the environmental impact of greenhouse gas (GHG) emissions, a growing number of national governments are putting emphasis on improving the energy efficiency of the equipment employed throughout their transportation systems. Within the U.S. transportation sector, energy use in commercial vehicles has been increasing at a faster rate than that of automobiles. A 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected from 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. and global economies.
Technical Paper

Switching Response Optimization for Cylinder Deactivation with Type II Passenger Car Applications

2014-04-01
2014-01-1704
An advanced Variable Valve Actuation (VVA) system is optimized for response time in order to provide robust switching at high engine speeds. The VVA system considered is Cylinder Deactivation (CDA) for the purpose of improving fuel economy. Specifically, a Switching Roller Finger Follower (SRFF) on a Dual Overhead Camshaft (DOHC) engine is optimized for cylinder deactivation. The objective of this work is to (1) improve the latch response time when the system response is the slowest, and (2) balance the “ON” and “OFF” response time. A proper tradeoff was established to provide the minimum switching time such that deactivation and reactivation occurs seamlessly and in the right sequence. The response time optimization is accomplished while maintaining the existing packaging space of the overhead. A camshaft with a single lobe per SRFF device on a type II valvetrain was used as the baseline configuration for this study.
Technical Paper

Sustained Low Temperature NOx Reduction

2018-04-03
2018-01-0341
Sustained NOx reduction at low temperatures, especially in the 150-200 °C range, shares some similarities with the more commonly discussed cold-start challenge, however, poses a number of additional and distinct technical problems. In this project, we set a bold target of achieving and maintaining 90% NOx conversion at the SCR catalyst inlet temperature of 150 °C. This project is intended to push the boundaries of the existing technologies, while staying within the realm of realistic future practical implementation. In order to meet the resulting challenges at the levels of catalyst fundamentals, system components, and system integration, Cummins has partnered with the DOE, Johnson Matthey, and Pacific Northwest National Lab and initiated the Sustained Low-Temperature NOx Reduction program at the beginning of 2015 and completed in 2017.
Technical Paper

Sulfur Management of NOx Adsorber Technology for Diesel Light-duty Vehicle and Truck Applications

2003-10-27
2003-01-3245
Sulfur poisoning from engine fuel and lube is one of the most recognizable degradation mechanisms of a NOx adsorber catalyst system for diesel emission reduction. Even with the availability of 15 ppm sulfur diesel fuel, NOx adsorber will be deactivated without an effective sulfur management. Two general pathways are currently being explored for sulfur management: (1) the use of a disposable SOx trap that can be replaced or rejuvenated offline periodically, and (2) the use of diesel fuel injection in the exhaust and high temperature de-sulfation approach to remove the sulfur poisons to recover the NOx trapping efficiency. The major concern of the de-sulfation process is the many prolonged high temperature rich cycles that catalyst will encounter during its useful life. It is shown that NOx adsorber catalyst suffers some loss of its trapping capacity upon high temperature lean-rich exposure.
Journal Article

Spatially-Resolved Thermal Degradation Induced Temperature Pattern Changes along a Commercial Lean NOX Trap Catalyst

2010-04-12
2010-01-1214
The low-temperature performance characteristics of a commercial lean NOX trap catalyst were evaluated using infra-red thermography (IRT) before and after a high-temperature aging step. Reaction tests included propylene oxidation, oxygen storage capacity measurements, and simulated cycling conditions for NOX reduction, using H₂ as the reductant during the regeneration step of the cycle. Testing with and without NO in the lean phase showed thermal differences between the reductant used in reducing the stored oxygen and that for nitrate decomposition and reduction. IRT clearly demonstrated where NOX trapping and regeneration were occurring spatially as a function of regeneration conditions, with variables including hydrogen content of the regeneration phase and lean- and rich-phase cycle times.
Technical Paper

Sooted Diesel Engine Oil Pumpability Studies as the Basis of a New Heavy Duty Diesel Engine Oil Performance Specification

2002-05-06
2002-01-1671
Changing diesel engine emission requirements for 2002 have led many diesel engine manufacturers to incorporate cooled Exhaust Gas Recirculation, EGR, as a means of reducing NOx. This has resulted in higher levels of soot being present in used oils. This paper builds on earlier work with fresh oils and describes a study of the effect of highly sooted oils on the low temperature pumpability in diesel engines. Four experimental diesel engine oils, of varying MRV TP-1 viscosities, were run in a Mack T-8 engine to obtain a soot level ranging between 6.1 and 6.6%. These sooted oils were then run in a Cummins M11 engine installed in a low temperature cell. Times to lubricate critical engine components were measured at temperatures ranging between -10 °C and -25 °C. A clear correlation was established between the MRV TP-1 viscosity of a sooted oil and the time needed to lubricate critical engine components at a given test temperature.
Journal Article

Smart Sensing and Decomposition of NOx and NH3 Components from Production NOx Sensor Signals

2011-04-12
2011-01-1157
Production NO sensors have a strong cross-sensitivity to ammonia which limits their use for closed-loop SCR control and diagnostics since increases in sensor output can be caused by either gas component. Recently, Ammonia/NO Ratio (ANR) perturbation methods have been proposed for determining the dominant component in the post-SCR exhaust as part of the overall SCR control strategy, but these methods or the issue of sensor cross-sensitivity have not been critically evaluated or studied in their own right. In this paper the dynamic sensor direct- and cross-sensitivities are estimated from experimental FTIR data (after compensating for the dynamics of the gas sampling system) and compared to nominal values provided by the manufacturer. The ANR perturbation method and the use of different input excitations are then discussed within an analytical framework, and applied to experimental data from a large diesel engine.
Journal Article

Simulation of Organic Rankine Cycle Power Generation with Exhaust Heat Recovery from a 15 liter Diesel Engine

2015-04-14
2015-01-0339
The performance of an organic Rankine cycle (ORC) that recovers heat from the exhaust of a heavy-duty diesel engine was simulated. The work was an extension of a prior study that simulated the performance of an experimental ORC system developed and tested at Oak Ridge National laboratory (ORNL). The experimental data were used to set model parameters and validate the results of that simulation. For the current study the model was adapted to consider a 15 liter turbocharged engine versus the original 1.9 liter light-duty automotive turbodiesel studied by ORNL. Exhaust flow rate and temperature data for the heavy-duty engine were obtained from Southwest Research Institute (SwRI) for a range of steady-state engine speeds and loads without EGR. Because of the considerably higher exhaust gas flow rates of the heavy-duty engine, relative to the engine tested by ORNL, a different heat exchanger type was considered in order to keep exhaust pressure drop within practical bounds.
Technical Paper

Simulation of Creep Phenomenon for Gasket Sealing

2013-01-09
2013-26-0073
Creep is responsible for creating time dependent changes in product dimensions and reducing strength that could affect the ability of products to resist design loads. Creep behavior is an important design consideration for polymers as this phenomenon is observed at very low temperatures compared to metals. Literature suggests many mathematical models to represent this complex creep phenomenon; however they are limited to most common polymers. Today's automotive industry is equipped with state of the art polymer materials considering specific design requirements from the stake holders. The current study is focused on the engine oil pan and its sealing requirements for the automotive business. Computer Aided Engineering (CAE) plays a very critical role in today's quest to reduce the design cycle and testing time.
Journal Article

Signal-Based Actuators Fault Detection and Isolation for Gearbox Applications

2014-05-09
2014-01-9022
Electro-hydraulic actuated systems are widely used in industrial applications due to high torque density, higher speeds and wide bandwidth operation. However, the complexities and the parametric uncertainties of the hydraulic actuated systems pose challenges in establishing analytical mathematical models. Unlike electro-mechanical and pneumatic systems, the nonlinear dynamics due to dead band, hysteresis, nonlinear pressure flow relations, leakages and friction affects the pressure sensitivity and flow gain by altering the system's transient response, which can introduce asymmetric oscillatory behavior and a lag in the system response. The parametric uncertainties make it imperative to have condition monitoring with in-built diagnostics capability. Timely faults detection and isolation can help mitigate catastrophic failures. This paper presents a signal-based fault diagnostic scheme for a gearbox hydraulic actuator leakage detection using the wavelet transform.
Technical Paper

Shearographic Nondestructive Testing for High-Pressure Composite Tubes

2018-04-03
2018-01-1219
In response to the need for lightweight design in industries, composite materials are increasingly used to replace traditional metal tubes. However, subsurface defects such as voids, delaminations, and microcracks are still remaining common issues in composite pressure tubes. This paper introduces an application of Digital Shearography method in the Non-Destructive Testing (NDT) of high-pressure composite tubes. A new prototype high-pressure composite tube with a working pressure of 1000 psi range is tested using the digital Shearography method. To detect the sub-surface defects, a reference Shearographic phase map is created at 0 psi state, after that the composite tube is pressured using an oil pump, then the second Shearographic phase map is created at the pressured state. By subtracting the two shearographic phase maps created in different pressure state, the sub-surface defects can be identified clearly. The Shearographic NDT result is then compared with CT scan result.
X