Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

“Next Generation” Means for Detecting Squeaks and Rattles in Instrument Panels

1997-05-20
972061
Engineers doing squeak and rattle testing of instrument panels (IP's) have successfully used large electrodynamic vibration systems to identify sources of squeaks and rattles (S&R's). Their successes led to demands to test more IP's, i.e., to increase throughput of IP's to reflect the many design, material, and/or manufacturing process changes that occur, and to do so at any stage of the development, production, or QA process. What is needed is a radically different and portable way to find S&R's in a fraction of the time and at lower capital cost without compromising S&R detection results.
Technical Paper

World Wide Escort/Lynx Engine Design and Development

1981-02-01
810008
In 1981, Ford Motor Company introduced a new family of fuel efficient four cylinder engines world wide. These engines, based on a compound valve arrangement in a hemispherical combustion chamber, were specifically designed for installation in light weight front-wheel-drive vehicles. Ford Research efforts were integrated with the resources of Ford U.S. and Ford of Europe to design and develop the engine in a compressed time frame. The technical and organizational efforts to accomplish this task, as well as, the design and development are discussed.
Technical Paper

Wear Protection Properties of Flexible Fuel Vehicle (FFV) Lubricants

1993-10-01
932791
A laboratory wear test is used to evaluate the wear protection properties of new and used engine oils formulated for FFV service. Laboratory-blended mixtures of these oils with methanol and water have also been tested. The test consists of a steel ball rotating against three polished cast iron discs. Oil samples are obtained at periodic intervals from a fleet of 3.0L Taurus vehicles operating under controlled go-stop conditions. To account for the effects of fuel dilution, some oils are tested before and after a stripping procedure to eliminate gasoline, methanol and other volatile components. In addition to TAN and TBN measurements, a capillary electrophoresis technique is used to evaluate the formate content in the oils. The results suggest that wear properties of used FFV lubricants change significantly with their degree of usage.
Technical Paper

WHERE DOES ALL THE POWER GO?

1957-01-01
570058
AS a basis for the analyses of this symposium, a hypothetical car has been used to evaluate the engine power distribution in performance. Effects of fuel,-engine accessories, and certain car accessories are evaluated. The role of the transmission in making engine power useful at normal car speeds is also discussed. Variables encountered in wind and rolling resistance determinations are reevaluated by improved test techniques. Net horsepower of the car in terms of acceleration, passing ability and grade capability are also summarized.
Technical Paper

Virtual Engine Dynamometer in Service Life Testing of Transmissions: A Comparison Between Real Engine and Electric Dynamometers as Prime Movers in Validation Test Rigs

2010-04-12
2010-01-0919
A test cell was developed for evaluating a 6-speed automatic transmission. The target vehicle had an internal combustion 5.4L gasoline V8 engine. An electric dynamometer was used to closely simulate the engine characteristics. This included generating mean torque from the ECU engine map, with a transient capability of 10,000 rpm/second. Engine inertia was simulated with a transient capability of 20,000 rpm/second, and torque pulsation was simulated individually for each piston, with a transient capability of 50,000 rpm/second. Quantitative results are presented for the correlation between the engine driven and the dynamometer driven transmission performance over more than 60 test cycles. Concerns about using the virtual engine in validation testing are discussed, and related to the high frequency transient performance required from the electric dynamometer. Qualitative differences between the fueled engine and electric driven testing are presented.
Technical Paper

Vehicle System Control for Start-Stop Powertrains with Automatic Transmissions

2013-04-08
2013-01-0347
The 2013 Ford Fusion will be launched with an optional automatic engine start-stop feature. To realize engine start-stop on a vehicle equipped with a conventional powertrain, there are two major challenges in the vehicle system controls. First, the propulsive torque delivery from a stopped engine has to be fast. The vehicle launch delay has to be minimized such that the corporate vehicle attributes can be met. Second, the fuel economy improvement offered by this technology has to justify the cost associated with it. In pursuing fuel economy, the driver's comfort and convenience should be minimally impacted. To tackle these challenges, a vehicle system control strategy has been developed to accurately interpret the driver's intent, monitor the vehicle subsystem's power demands, schedule engine automatic stop and re-start, and coordinate the fast and smooth torque delivery to the wheels.
Technical Paper

Vehicle Response to Throttle Tip-In/Tip-Out

1985-05-15
850967
Throttle tip-in/tip-out maneuvers generate a driveline torque transient which may produce an objectionable disturbance to vehicle occupants. Recent developments in vehicle design have contributed to increased severity in this response, which is known as clunk and shuffle. This paper describes experimental procedures which have been developed to quantify response levels and diagnose cases of concern. These techniques are useful for developing engine control systems which require transient strategies that differ greatly from those required for steady state operation. In addition, specific design and calibration modifications, which control clunk and shuffle, are described.
Technical Paper

Vehicle Noise and Weight Reduction Using Panel Acoustic Contribution Analysis

1995-05-01
951338
Panel acoustic contribution analysis (PACA) is an advanced engineering tool to improve the NVH quality of vehicles. Using PACA areas of vehicle body panels are categorized according to their contribution to the total sound. Positive contribution areas increase the sound level as vibration amplitude increases, negative contribution areas decrease the sound level as vibration amplitude increases, and neutral areas have no significant effect on the sound level. This knowledge is important to guide vehicle NVH refinement. This paper presents the technical approach of PACA and the results of an experiment used to validate the PACA techniques. Vehicle application results to improve NVH quality and reduce weight are also included.
Technical Paper

Vehicle Exhaust Particle Size Distributions: A Comparison of Tailpipe and Dilution Tunnel Measurements

1999-05-03
1999-01-1461
This paper explores the extent to which standard dilution tunnel measurements of motor vehicle exhaust particulate matter modify particle number and size. Steady state size distributions made directly at the tailpipe, using an ejector pump, are compared to dilution tunnel measurements for three configurations of transfer hose used to transport exhaust from the vehicle tailpipe to the dilution tunnel. For gasoline vehicles run at a steady 50 - 70 mph, ejector pump and dilution tunnel measurements give consistent results of particle size and number when using an uninsulated stainless steel transfer hose. Both methods show particles in the 10 - 100 nm range at tailpipe concentrations of the order of 104 particles/cm3.
Technical Paper

Vehicle Duty Cycle Characteristics for Hybrid Potential Evaluation

2012-09-24
2012-01-2023
A range of cycle characteristics have been used to estimate the hybrid potential for vehicle duty cycles including characteristic acceleration, aerodynamic velocity, kinetic intensity, stop time, etc. These parameters give an indication of overall hybrid potential benefits, but do not contain information on the distribution of the available braking energy and the hybrid system power required to capture the braking energy. In this paper, the authors propose two new cycle characteristics to help evaluate overall hybrid potential of vehicle cycles: P50 and P90, which are non-dimensional power limits at 50% and 90% of available braking energy. These characteristics are independent of vehicle type, and help illustrate the potential hybridization benefit of different drive cycles. First, the distribution of available braking energy as a function of brake power for different vehicle cycles and vehicle classes is analyzed.
Technical Paper

Vehicle Closure Sound Quality

1995-05-01
951370
This paper describes an investigation into the sound quality of passenger car and light truck closure sounds. The closure sound events that were studied included side doors, hoods, trunklids, sliding doors, tailgates, liftgates, and fuel filler doors. Binaural recordings were made of the closure sounds and presented to evaluators. Both paired comparison of preference and semantic differential techniques were used to subjectively quantify the sound quality of the acoustic events. Major psychoacoustic characteristics were identified, and objective measures were then derived that were correlated to the subjective evaluation results. Regression analysis was used to formulate models which can quantify customers perceptions of the sounds based on the objectively derived parameters. Many times it was found that the peak loudness level was a primary factor affecting the subjective impression of component quality.
Technical Paper

Variable Displacement by Engine Valve Control

1978-02-01
780145
Intake and exhaust valve control has been combined with engine calibration control by an on-board computer to achieve a Variable Displacement Engine with improved BSFC during part throttle operation. The advent of the on-board computer, with its ability to provide integrated algorithms for the fast accurate flexible control of the entire powertrain, has allowed practical application of the valve disabler mechanism. The engine calibration basis and the displacement selection criteria are discussed, as are the fuel economy, emissions and behavior of a research vehicle on selected drive cycles ( Metro, Highway and Steady State ). Additionally, the impact upon vehicle driveability and other related subsystems ( e.g., transmission ) is addressed.
Technical Paper

Variability of Hybrid III Clearance Dimensions within the FMVSS 208 and NCAP Vehicle Test Fleets and the Effects of Clearance Dimensions on Dummy Impact Responses

1995-11-01
952710
Locations of key body segments of Hybrid III dummies used in FMVSS 208 compliance tests and NCAP tests were measured and subjected to statistical analysis. Mean clearance dimensions and their standard deviations for selected body segments of driver and passenger occupants with respect to selected vehicle surfaces were determined for several classes of vehicles. These occupant locations were then investigated for correlation with impact responses measured in crash tests and by using a three dimensional human-dummy mathematical model in comparable settings. Based on these data, the importance of some of the clearance dimensions between the dummy and the vehicle surfaces was determined. The study also compares observed Hybrid III dummy positions within selected vehicles with real world occupant positions reported in published literature.
Journal Article

Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard

2014-04-01
2014-01-1990
The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
Technical Paper

Using Experimental Modal Modeling Techniques to Investigate Steering Column Vibration and Idle Shake of a Passenger Car

1985-05-15
850996
An experimental modal model of an early prototype car was constructed and validated against test results. The model was then used to suggest practical hardware modification alternatives which would: (1) shift the steering column resonant frequency away from the idle range, and (2) maintain a low steering column tip vibration within the 600-750 RPM idle range. This model was also used to evaluate the effectiveness of tuning radiator mounts to the overall vehicle idle quality. It was found that a pair of braces from either the steering column bracket to brake pedal bracket or to the cowl top area could improve idle shake of the test vehicle. The driver side brake pedal brace alone is not effective. However, the passenger side brake pedal brace alone is as effective as the two brake pedal braces together. It was found that the radiator mounts on the test vehicle are extremely non-linear. Therefore, tuning the mount to improve idle quality is impractical.
Technical Paper

Understanding the Thermodynamics of Direct Injection Spark Ignition (DISI) Combustion Systems: An Analytical and Experimental Investigation

1996-10-01
962018
Direct-injection spark-ignition (DISI) engines have been investigated for many years but only recently have shown promise as a next generation gasoline engine technology. Much of this new enthusiasm is due to advances in the fuel injection system, which is now capable of producing a well-controlled spray with small droplets. A physical understanding of new combustion systems utilizing this technology is just beginning to occur. This analytical and experimental investigation with a research single-cylinder combustion system shows the benefits of in-cylinder gasoline injection versus injection of fuel into the intake port. Charge cooling with direct injection is shown to improve volumetric efficiency and reduce the mixture temperature at the time of ignition allowing operation with a higher compression ratio which improves the thermodynamic cycle efficiency.
Technical Paper

Underhood Thermal Management by Controlling Air Flow

1995-02-01
951013
A series of tests were conducted to determine the potential for reducing vehicle underhood temperatures by either 1) diverting the radiator fan air flow from the engine compartment or 2) by forced air cooling of the exhaust manifold in conjunction with shielding it or 3) by a combination of the two methods. The test vehicle was a Ford F-250 Light Truck with a 7.5L V-8 engine. The vehicle was tested in a dynamometer cell equipped with cell blowers to simulate road speed conditions. It was found that diverting the outlet air from the radiator will reduce underhood component temperatures when the vehicle is in motion and also at normal idle. However, if the vehicle is to be used for power takeoff applications requiring a “kicked” idle, then forced cooling of the exhaust manifolds is also required to maintain reduced underhood temperatures. A combination of these two techniques maximized the reduction of underhood temperatures for all operating conditions tested.
Technical Paper

Ultra-Long Life Oil-Free Supercharger for Fuel Cell and Hybrid Vehicle Power Trains

2013-04-08
2013-01-0478
Automotive hybrid electric vehicle applications require 1 million (or more) start-stops. This same level of start-stops is also required for hydrogen PEM fuel cell vehicles. In this investigation, a test regime is developed to stress the failure mode of a set of airfoil journal bearings caused by start-stops, and conceive a proper improvement to meet the requirement. Airfoil bearings have been limited by the number of start-stops due to their inherent wearout of coating(s) at low speed. A complete electronic air cathode compressor (electronic supercharger) assembly is tested, employing a pair of φ25 mm journal airfoil bearings. The foils have 34 μm of surface PTFE coating. After 50,000 start-stops, the coating is worn through. Next an improved system is tested, which has modified coating on the bearing journal surfaces. These bearings are examined roughly every 250,000 start-stops. After 1 million start-stops, the coating has worn 5 μm.
Technical Paper

Two Piece Composite Truck Cab

1990-02-01
900306
This report is a comprehensive investigation into the use of resin transfer molded glass fiber reinforced plastics in a structural application. A pickup truck cab structure is an ideal application for plastic composites. The cab is designed to fit a production Ranger pickup truck and uses carryover frame and front end structure. The cab concept consists primarily of two molded pieces. This design demonstrates extensive parts integration and allows for low-cost tooling, along with automated assembly.
Journal Article

Turbocharger Turbine Inlet Isentropic Pressure Observer Model

2015-04-14
2015-01-1617
Exhaust pressures (P3) are hard parameters to measure and can be readily estimated, the cost of the sensors and the temperature in the exhaust system makes the implementation of an exhaust pressure sensor in a vehicle control system a costly endeavor. The contention with measured P3 is the accuracy required for proper engine and vehicle control can sometimes exceed the accuracy specification of market available sensors and existing models. A turbine inlet exhaust pressure observer model based on isentropic expansion and heat transfer across a turbocharger turbine was developed and investigated in this paper. The model uses 4 main components; an open loop P3 orifice flow model, a model of isentropic expansion across the turbine, a turbine and pipe heat transfer models and an integrator with the deviation in the downstream turbine outlet parameter.
X