Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wind Noise Spectral Predictions Using a Lattice-Based Method

1999-05-17
1999-01-1810
The current ability of the Virtual Aerodynamic/ Aeroacoustic Wind Tunnel to predict interior vehicle sound pressure levels is demonstrated using an automobile model which has variable windshield angles. This prediction method uses time-averaged flow solutions from a lattice gas CFD code coupled with wave number-frequency spectra for the various flow regimes to calculate the side window vibration from which the sound pressure level spectrum at the driver's ear is determined. These predictions are compared to experimental wind tunnel data. The results demonstrate the ability of this methodology to correctly predict wind noise spectral trends as well as the overall loudness at the driver's ear. A more sophisticated simulation method employing the same lattice gas code is investigated for prediction of the time-accurate flow field necessary to compute the actual side glass pressure spectra.
Technical Paper

WHERE DOES ALL THE POWER GO?

1957-01-01
570058
AS a basis for the analyses of this symposium, a hypothetical car has been used to evaluate the engine power distribution in performance. Effects of fuel,-engine accessories, and certain car accessories are evaluated. The role of the transmission in making engine power useful at normal car speeds is also discussed. Variables encountered in wind and rolling resistance determinations are reevaluated by improved test techniques. Net horsepower of the car in terms of acceleration, passing ability and grade capability are also summarized.
Technical Paper

Virtual Engine Dynamometer in Service Life Testing of Transmissions: A Comparison Between Real Engine and Electric Dynamometers as Prime Movers in Validation Test Rigs

2010-04-12
2010-01-0919
A test cell was developed for evaluating a 6-speed automatic transmission. The target vehicle had an internal combustion 5.4L gasoline V8 engine. An electric dynamometer was used to closely simulate the engine characteristics. This included generating mean torque from the ECU engine map, with a transient capability of 10,000 rpm/second. Engine inertia was simulated with a transient capability of 20,000 rpm/second, and torque pulsation was simulated individually for each piston, with a transient capability of 50,000 rpm/second. Quantitative results are presented for the correlation between the engine driven and the dynamometer driven transmission performance over more than 60 test cycles. Concerns about using the virtual engine in validation testing are discussed, and related to the high frequency transient performance required from the electric dynamometer. Qualitative differences between the fueled engine and electric driven testing are presented.
Technical Paper

Vehicle Wind Noise Analysis Using a SEA Model with Measured Source Levels

2001-04-30
2001-01-1629
A series of tests have been performed on a production vehicle to determine the characteristics of the external turbulent flow field in wind tunnel and road conditions. Empirical formulas are developed to use the measured data as source levels for a Statistical Energy Analysis (SEA) model of the vehicle structural and acoustical responses. Exterior turbulent flow and acoustical subsystems are used to receive power from the source excitations. This allows for both the magnitudes and wavelengths of the exterior excitations to be taken into account - a necessary condition for consistently accurate results. Comparisons of measured and calculated interior sound levels show good correlation.
Technical Paper

Vehicle Sound Package - Art or Science?

1972-02-01
720508
Sound package engineering has always been an art developed through experience and much subjective road testing. Because the problem is complex, it is essential to have a logical procedure to achieve the most efficient sound package. The quiet car concept is proposed as a solution. Additionally, a plea is made for relevant automobile-oriented material test procedures to be recognized industry-wide.
Technical Paper

Vehicle Fuel Economy-The CleanFleet Alternative Fuels Project

1995-02-01
950396
Fuel economy estimates are provided for the CleanFleet vans operated for two years by FedEx in Southern California. Between one and three vehicle manufacturers (Chevrolet, Dodge, and Ford) supplied vans powered by compressed natural gas (CNG), propane gas, California Phase 2 reformulated gasoline (RFG), methanol (M-85), and unleaded gasoline as a control. Two electric G-Vans, manufactured by Conceptor Corporation, were supplied by Southern California Edison. Vehicle and engine technologies are representative of those available in early 1992. A total of 111 vans were assigned to FedEx delivery routes at five demonstration sites. The driver and route assignments were periodically rotated within each site to ensure that each vehicle would experience a range of driving conditions. Regression analysis was used to estimate the relationships between vehicle fuel economy and factors such as the number of miles driven and the number of delivery stops made each day.
Technical Paper

Vehicle Flow Measurement and CFD Analysis for Wind Noise Assessment

1997-02-24
970403
A time cost effective methodology has been developed for the prediction of the A-pillar vortex formation and the side and the rear window flow separation for the purpose of wind noise assessment. This methodology combines a simplified Computational Fluid Dynamics (CFD) model and wind tunnel test data by CFD post-processing tools. The solution of the simplified CFD model provides background data for the whole flow field, but it lacks detail features such as mirror, sealing groove and glass in-set, which are locally important but difficult to mesh and require a very fine mesh resolution. The wind tunnel test data was taken in the specific areas of interest at the A-pillar, side window, rear window area, and roof from a real automotive. Then the wind tunnel test data was superposed upon the simplified CFD model to correct the numerical error due to geometry simplification and insufficient mesh resolution.
Technical Paper

Vehicle Exhaust Particle Size Distributions: A Comparison of Tailpipe and Dilution Tunnel Measurements

1999-05-03
1999-01-1461
This paper explores the extent to which standard dilution tunnel measurements of motor vehicle exhaust particulate matter modify particle number and size. Steady state size distributions made directly at the tailpipe, using an ejector pump, are compared to dilution tunnel measurements for three configurations of transfer hose used to transport exhaust from the vehicle tailpipe to the dilution tunnel. For gasoline vehicles run at a steady 50 - 70 mph, ejector pump and dilution tunnel measurements give consistent results of particle size and number when using an uninsulated stainless steel transfer hose. Both methods show particles in the 10 - 100 nm range at tailpipe concentrations of the order of 104 particles/cm3.
Technical Paper

Vehicle Emissions Results-CleanFleet Alternative Fuels Project

1995-02-01
950394
Vehicle exhaust emissions measurements are reported for full-size panel vans operating on four alternative motor fuels and control gasoline. The emissions tests produced data on in-use vans. The vans were taken directly from commercial delivery service for testing as they accumulated mileage over a 24-month period. The alternative fuels tested were compressed natural gas, propane gas, California Phase 2 reformulated gasoline (RFG), and methanol (M-85 with 15 percent RFG). The control gasoline for the emissions tests was an industry average unleaded blend (RF-A). The vehicle technologies tested represent those options available in 1992 that were commercially available from Ford, Chrysler, and Chevrolet or which these manufacturers agreed to provide as test vans for daily use in commercial service by FedEx.
Technical Paper

Vehicle Disc Brake Squeal Simulations and Experiences

1999-05-18
1999-01-1738
Brake related warranty costs are a major concern to the automotive industry. Large part of these costs are due to noise, more particularly due to the brake squeal complaints. Computer-aided engineering solutions have attracted a lot of attention from the engineering and development community for more effective brake product development. Recently, three brake squeal analysis methods were implemented on disc type brakes in a vehicle program at Ford. This paper summarizes the results and documents the experience obtained during implementation in the vehicle CAE process.
Technical Paper

Vehicle Body Structure Durability Analysis

1995-04-01
951096
Due to several indeterminate factors, the assessment of the durability performance of a vehicle body is traditionally accomplished using test methods. An analytical fatigue life prediction method (four-step durability process) that relies mainly on numerical techniques is described in this paper. The four steps comprising this process include the identification of high stress regions, recognizing the critical load types, determining the critical road events and calculation of fatigue life. In addition to utilizing a general purpose finite element analysis software for the application of the Inertia Relief technique and a previously developed fatigue analysis program, two customized programs have been developed to streamline the process into an integrated, user-friendly tool. The process is demonstrated using a full body, finite element model.
Technical Paper

User's View of Process Control Computer Systems Management

1972-02-01
720457
A survey of industrial control computer applications presently operational in this user's facilities revealed an approximate 50/50 division between those that were internally and externally implemented. Problems encountered in the planning, launching, and follow-up phase of system installation were found to be common to both internal and external system implementations and are categorized and evaluated as being inherent and environmental in nature. In an effort to avoid anticipated problems characteristic of a computerized installation, proper staffing as an inhouse project team is essential. During the process of developing inhouse talent, three plateaus of system implementation maturity are attained. These plateaus range from complete dependency upon outside assistance to “do it yourself” inhouse implementation. Flow charts are developed to depict typical decision paths leading to a plateau of system implementation most appropriate for the particular user “turnkey dilemma.”
Technical Paper

Use of FCRASH in a Door Openability Simulation

1997-04-08
971526
During frontal and rear end type collisions, very large forces will be imparted to the passenger compartment by the collapse of either front or rear structures. NCAP tests conducted by NHTSA involve, among other things, a door openability test after barrier impact. This means that the plastic/irreversible deformations of door openings should be kept to a minimum. Thus, the structural members constituting the door opening must operate during frontal and rear impact near the elastic limit of the material. Increasing the size of a structural member, provided the packaging considerations permit it, may prove to be counter productive, since it may lead to premature local buckling and possible collapse of the member. With the current trend towards lighter vehicles, recourse to heavier gages is also counterproductive and therefore a determination of an optimum compartment structure may require a number of design iterations. In this article, FEA is used to simulate front side door behavior.
Technical Paper

Use of Experimentally Measured In-Cylinder Flow Field Data at IVC as Initial Conditions to CFD Simulations of Compression Stroke in I.C. Engines - A Feasibility Study

1994-03-01
940280
The feasibility of using experimentally determined flow fields at intake valve closing, IVC, as initial conditions for computing the in-cylinder flow dynamics during the compression stroke is demonstrated by means of a computer simulation of the overall approach. A commercial CFD code, STAR-CD, was used for this purpose. The study involved two steps. First, in order to establish a basis for comparison, the in-cylinder flow field throughout the intake and compression strokes, from intake valve opening, IVO, to top dead center, TDC, was computed for a simple engine geometry. Second, experimental initial conditions were simulated by randomly selecting and perturbing a set of velocity vectors from the computed flow field at IVC.
Technical Paper

Use of E-Mail in Global Virtual Team: a Field Research

2012-10-02
2012-36-0364
In nowadays market, highlighted by global products, companies are pushed to sell products that comply with legal and customer requirements in different countries and, not unusually, different continents. In order to achieve such challenge, and pressed to reduce project and production costs, companies are spreading design centers around the world, based on regional expertise. These excellence centers must work together to benefit from synergies and local skills from different regions. Such projects are staffed by Virtual Team (BINDER, 2007), whose members barely face each other. This means teams will work frequently with people they have never met, who live on different time zones and have different cultures. As a consequence, communication is done basically through computer-based media, mainly based on emailing, and must be even clearer and more direct than with the people who work on the next desk.
Technical Paper

Upfront Durability CAE Analysis for Automotive Sheet Metal Structures

1996-02-01
961053
Automotive product development requires higher degree of quality upfront engineering, faster CAE turn-around, and integration with other functional requirements. Prediction of potential durability concerns using analytical methods for sheet metal structures subjected to road loads and other customer uses has become very important. A process has been developed to provide design direction based upon peak loads, simultaneous peak loads, and vehicle program analytical or measured loads. It identifies critical loads at each input location and load sets for multiple input locations, filters load time histories, selects critical areas and analyzes for fatigue life. Several case studies have been completed. The results show that the variations are consistent with the accuracies in finite element analysis, road load data acquisition, and fatigue calculation methods.
Technical Paper

Unsteady Vaporization Histories and Trajectories of Fuel Drops Injected into Swirling Air

1962-01-01
620271
Single droplet theory is used to simulate the behavior of fuel sprays in high-speed open-chamber diesels. A model for sprays in still air is presented which includes the air motion induced by the spray. Calculated paths and vaporization histories for droplets injected into swirling air are also presented. It is shown that the paths of vaporizing drops are closely approximated by solid sphere calculations. The effects of swirl speed, engine rpm, and squish air motion are also investigated.
Technical Paper

Ultra Thin Wall Substrates - Trends for Performance in FTP and US06 Tests

2002-03-04
2002-01-0356
This paper compares the emissions performance of four ultra thin wall ceramic substrates with standard wall thickness product on a chassis dynamometer for two different substrate volumes. This comparison helps establish performance trends and provides useful information for selection of substrates in designing catalytic converter systems. This experimental study tests and compares four ultra thin wall products (400/4, 600/3, 600/4, and 900/2) with a standard wall product (400/6.5) at two different substrate volumes. Engine bench aging is used to simulate typical aged conditions. Temperature data as well as second by second and bag emissions data for hydrocarbons, carbon monoxide and oxides of nitrogen were used to evaluate the relative performances of the substrates. The US FTP and US06 driving cycles were used as protocols for the comparison. Results suggest that lower bulk density and higher geometric surface area interact to lead to lower emissions.
Technical Paper

USCAR U.S. Field Trial for Automotive Polymers Recycling: Interim Findings

2000-03-06
2000-01-0735
In 1998, the United States Field Trial was chartered by the United States Council for Automotive Research/Vehicle Recycling Partnership with the objective of evaluating the feasibility of collecting and recycling automotive polymers from domestic end-of-life Vehicles (ELVs). Although ELVs are among the most widely recycled consumer products, 15-25% of their total mass must nevertheless be disposed of with no material recovery; the majority of this remainder is polymeric. Concerns regarding vehicle abandonment risks and disposal practices have resulted in the legislated treatment of ELVs in Western Europe, and in the emergence of attendant material recycling schemes. These schemes support quantitatively optimized material collection, but do not appear to be sustainable under the free-market economic conditions prevalent in North America.
X