Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Gasoline-Diesel Dual Fuel: Effect of Injection Timing and Fuel Balance

2011-12-15
2011-01-2437
Recently, some studies have shown high efficiencies using controlled auto-ignition by blending gasoline and diesel to a desired reactivity. This concept has been shown to give high efficiency and, because of the largely premixed charge, low emission levels. The origin of this high efficiency, however, has only partly been explained. Part of it was attributed to a lower temperature combustion, originating in lower heat losses. Another part of the gain was attributed to a faster, more Otto-like (i.e. constant volume) combustion. Since the concept was mainly demonstrated on one single test setup so far, an experimental study has been performed to reproduce these results and gain more insight into their origin. Therefore one cylinder of a heavy duty test engine has been equipped with an intake port gasoline injection system, primarily to investigate the effects of the balance between the two fuels, and the timing of the diesel injection.
Technical Paper

Experimental Study of Fuel Composition Impact on PCCI Combustion in a Heavy-Duty Diesel Engine

2011-04-12
2011-01-1351
Premixed Charge Compression Ignition (PCCI) is a combustion concept that holds the promise of combining emission levels of a spark-ignition engine with the efficiency of a compression-ignition engine. In a short term scenario, PCCI would be used in the lower load operating range only, combined with conventional diesel combustion at higher loads. This scenario relies on using near standard components and conventional fuels; therefore a set of fuels is selected that only reflects short term changes in diesel fuel composition. Experiments have been conducted in one dedicated test cylinder of a modified 6-cylinder 12.6 liter heavy duty DAF engine. This test cylinder is equipped with a stand-alone fuel injection system, EGR circuit and air compressor. For the low load operating range the compression ratio has been lowered to 12:1 by means of a thicker head gasket.
X