Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Reliability Analysis of Adhesive for PBT-Epoxy Interface

2007-04-16
2007-01-1517
PBT (polybutylene terephthalate) and epoxy adhesive, which both have superior heat resistance and environmental resistance, are a representative combination now being applied to many parts. Generally, PBT is annealed after molding at a temperature above the glass transition temperature to ensure dimensional stability when in use. But in this case, this process decreases the adhesive strength between PBT and epoxy. This study analyzes the adhesion degradation mechanism in this system and a countermeasure technology is proposed. Regarding this PBT-epoxy adhesion degradation mechanism, focus is placed on changes in the fracture surface, which is analyzed before and after annealing. From this analysis it becomes clear that generation of a WBL (weak boundary layer) is caused by non-crystallization and a migration of the PBT functional group on the adhesion surface layer.
Technical Paper

Hexagonal Cell Ceramic Substrates for Lower Emission and Backpressure

2008-04-14
2008-01-0805
Stringent emission regulations call for advanced catalyst substrates with thinner walls and higher cell density. However, substrates with higher cell density increase backpressure, thinner cell wall substrates have lower mechanical characteristics. Therefore we will focus on cell configurations that will show a positive effect on backpressure and emission performance. We found that hexagonal cells have a greater effect on emission and backpressure performance versus square or round cell configurations. This paper will describe in detail the advantage of hexagonal cell configuration versus round or square configurations with respect to the following features: 1 High Oxygen Storage Capacity (OSC) performance due to uniformity of the catalyst coating layer 2 Low backpressure due to the large hydraulic diameter of the catalyst cell 3 Quick light off characteristics due to efficient heat transfer and low thermal mass
Technical Paper

Evaluation Method of Thermal Sensation and Comfort for Air Conditioning Performance Reduction

2018-04-03
2018-01-0775
As a method of maintaining thermal sensation and comfort inside a passenger compartment, not only a conventional HVAC system but also a combination of a HVAC system and other devices such as seat heaters, a steering wheel heater, ventilation seats are increasing. This research developed a method to evaluate thermal sensation of a human body when using these various thermal control devices. This method can evaluate the heat balance of the human body by calculating the amount of heat exchange between a human body and the external environment, and it takes into consideration the influence of heat exchange by heat conduction with seats or a steering wheel. The human thermal model is made by dividing a human body into various segments, and it is the model that considers heat transport by blood flow for each segment.
Journal Article

Development of Trivalent Chromium Passivation for Zn Platng with High Corrosion Resistance after Heating

2016-04-05
2016-01-0542
Trivalent chromium passivation is used after zinc plating for enhancing corrosion resistance of parts. In the passivating process, the amount of dissolved metal ions (for example zinc and iron) in the passivation solution increases the longer the solution is used. This results in a reduced corrosion resistance at elevated temperatures. Adding a top coat after this process improves the corrosion resistance but has an increased cost. To combat this, we strove to clarify the mechanism of decreased corrosion resistance and to develop a trivalent chromium passivation with a higher corrosion resistance at elevated temperatures. At first, we found that in parts produced from an older solution, the passivation layer has cracks which are not seen in parts from a fresh/new solution. These cracks grow when heated at temperatures over 120 degrees Celsius.
Technical Paper

Development of Sintered Bearing Material with Higher Corrosion Resistance for Fuel Pumps

2007-04-16
2007-01-0415
In recent years, due to a growing demand for improvement in the performance and reliability of automotive fuel pumps and the advancement of globalization, automotive fuel pumps are being used with inferior gasolines that include more sulfur, organic acids or compounds, compared to gasolines used in general regions. Conventionally, bearings in these fuel pumps have mainly been made of sintered bronze alloy. With this bronze alloy, however, it is difficult to achieve a significant improvement in the tribology characteristics of bearings, in order to meet the demands for performance improvement, etc., and corrosion is severe in inferior gasolines that contain highly-concentrated organic acids or sulfur and the corrosion products that accompany them. Therefore, in order to obtain fine tribology characteristics and superior corrosion resistance in gasolines with highly-concentrated organic acids and sulfur, various copper-based alloys were studied using the powder metallurgy process.
Technical Paper

Cold Storage Air Conditioning System for Idle Stop Vehicle

2013-04-08
2013-01-1287
The number of idle-stop vehicles is rapidly increasing in recent years, and air-conditioning technologies that extend engine stopped time while maintaining the cabin comfort are required. When the engine stops during idle- stop mode, the air conditioner also stops functioning. To maintain cabin comfort, the engine is restarted to work the air-conditioning cycle, which reduces the fuel saving effects. As a countermeasure, a cold storage air conditioning system has been proposed. The system extends engine non-operation time by using cold storage for generating cool air while the engine is stopped. We have integrated this technology into an evaporator, which is used in the air-conditioning cycle, and the system has a short cold storage period and a necessary cold release period. This report describes its concept and effects.
X