Refine Your Search

Topic

Author

Search Results

Technical Paper

Thermal Conductivity of Lofty Nonwovens in Space and Planetary Vacuum Environment

2001-07-09
2001-01-2166
For planetary exploration, new thermal insulation materials are needed to deal with unique environmental conditions presented to extravehicular activity (EVA). The thermal insulation material and system used in the existing space suit were specifically designed for low orbit environment. They are not adequate for low vacuum condition commonly found in planetary environments with a gas atmosphere. This study attempts to identify the types of lofty nonwoven thermal insulation materials and the construction parameters that yield the best performance for such application. Lofty nonwovens with different construction parameters are evaluated for their thermal conductivity performance. Three different types of fiber material: solid round fiber, hollow fiber, and grooved fiber, with various denier, needling intensity, and web density were evaluated.
Technical Paper

Space Life Support from the Cellular Perspective

2001-07-09
2001-01-2229
Determining the fundamental role of gravity in vital biological systems in space is one of six science and research areas that provides the philosophical underpinning for why NASA exists. The study of cells, tissues, and microorganisms in a spaceflight environment holds the promise of answering multiple intriguing questions about how gravity affects living systems. To enable these studies, specimens must be maintained in an environment similar to that used in a laboratory. Cell culture studies under normal laboratory conditions involve maintaining a highly specialized environment with the necessary temperature, humidity control, nutrient, and gas exchange conditions. These same cell life support conditions must be provided by the International Space Station (ISS) Cell Culture Unit (CCU) in the unique environment of space. The CCU is a perfusion-based system that must function in microgravity, at unit gravity (1g) on earth, and from 0.1g up to 2g aboard the ISS centrifuge rotor.
Technical Paper

Single Loop for Cell Culture (SLCC) – Development and Spaceflight Qualification of a Perfusion Cell Culture System

2006-07-17
2006-01-2212
Single Loop for Cell Culture (SLCC) consists of individual, self-contained, spaceflight cell culture systems with capabilities for automated growth initiation, feeding, sub-culturing and sampling. The cells are grown and contained within a rigid cell specimen chamber (CSC). Bladder tanks provide flush and media fluid. SLCC uses active perfusion flow to provide nutrients and gas exchange, and to dilute waste products by expelling depleted media fluid into a waste bladder tank. The cells can be grown quiescently, or suspended using magnetically coupled stirrers. This paper describes the functional and safety design features, the operational modes and the spaceflight qualification processes including science validation tests, using yeast as a model organism.
Technical Paper

Reactive Carbon from Life Support Wastes for Incinerator Flue Gas Cleanup

2000-07-10
2000-01-2283
This paper presents the results from a joint research initiative between NASA Ames Research Center and Lawrence Berkeley National lab. The objective of the research is to produce activated carbon from life support wastes and to use the activated carbon to adsorb and chemically reduce the NOx and SO2 contained in incinerator flue gas. Inedible biomass waste from food production is the primary waste considered for conversion to activated carbon. Results to date show adsorption of both NOx and SO2 in activated carbon made from biomass. Conversion of adsorbed NOx to nitrogen has also been observed.
Technical Paper

Pyrolysis of Mixed Solid Food, Paper, and Packaging Wastes

2008-06-29
2008-01-2050
Pyrolysis is a very versatile waste processing technology which can be tailored to produce a variety of solid, liquid and/or gaseous products. The pyrolysis processing of pure and mixed solid waste streams has been under investigation for several decades for terrestrial use and a few commercial units have been built for niche applications. Pyrolysis has more recently been considered for the processing of mixed solid wastes in space. While pyrolysis units can easily handle mixed solid waste streams, the dependence of the pyrolysis product distribution on the component composition is not well known. It is often assumed that the waste components (e.g., food, paper, plastic) behave independently, but this is a generalization that can usually only be applied to the overall weight loss and not always to the yields of individual gas species.
Technical Paper

Preliminary Development of a Suit Port for Planetary Surface EVA — Design Studies

2009-07-12
2009-01-2586
This paper present a summary of the design studies for the suit port proof of concept. The Suit Port reduces the need for airlocks by docking the suits directly to a rover or habitat bulkhead. The benefits include reductions in cycle time and consumables traditionally used when transferring from a pressurized compartment to EVA and mitigation of planetary surface dust from entering into the cabin. The design focused on the development of an operational proof of concept evaluated against technical feasibility, level of confidence in design, robustness to environment and failure, and the manufacturability. A future paper will discuss the overall proof of concept and provide results from evaluation testing including gas leakage rates upon completion of the testing program.
Technical Paper

Plant Growth and Plant Environmental Monitoring Equipment on the Mir Space Station: Experience and Data from the Greenhouse II Experiment

1996-07-01
961364
A three country effort (U.S., Russia, and Bulgaria) has upgraded the plant growth facilities on the Mir Space Station and used the new facility to grow wheat for 90 days. The Svet plant-growth facility was reactivated and used in an initial experiment as part of the Shuttle/Mir program, August to November, 1995. The Svet system, used first to grow cabbage and radish during a 1990 experiment, was augmented by the addition of a U.S. developed Gas Exchange Measurement System (GEMS) that measures a range of environmental parameters plus transpiration, photosynthesis, and possibly respiration. Environmental parameters include cabin, chamber, root-zones, and leaf temperatures. Light levels, relative humidity, oxygen, and atmospheric pressure are also measured. High-accuracy water-vapor and carbon-dioxide concentrations and differences are measured using specially developed IRGA systems.
Technical Paper

Plant Growth and Ecosystem Development on a Terraformed Mars: With the Use of the International Space Station to Investigate Plant Growth in Martian Gravity

1999-07-12
1999-01-2206
A fundamental question for Astrobiology is the question of the ability of life to expand beyond its planet of origin. Introducing life on Mars is the likely near-term step in addressing this question. Making Mars more suitable for life (terraforming) involves altering the martian environment so that microorganisms and plants from Earth could survive there. We define two principal goals: 1) determine the minimal change in pressure, gas composition, and temperature on Mars that would allow for growth of plants from arctic and alpine biomes. 2) Determine the characteristics of plant growth at 0.38 g. This paper reviews martian environmental factors in the context of plant survival, and discusses the use of Space Station as a hypogravity testbed.
Technical Paper

Modifications of Physiological Processes Concerning Extravehicular Activity in Microgravity

1994-06-01
941334
The incidence of DCS in null gravity appears to be considerably less than predicted by 1-g experiments. In NASA studies in 1-g, 83% of the incidents of DCS occur in the legs. We report first on a study with a crossover design that indicated a considerable reduction in the decompression Doppler bubble grade in the lower extremities in subjects in simulated microgravity (bed rest) as compared to themselves when ambulatory in unit gravity. Second we describe the results of a cardiovascular deconditioning study using a tail-suspended rat model. Since there may be a reduction in bubble production in 0-g, this would reduce the possibility of acquiring neurological DCS, especially by arterial gas embolism. Further, cardiovascular deconditioning appears to reduce the pulmonary artery hypertension (secondary to gas embolization) necessary to effect arterialization of bubbles.
Journal Article

Minimizing EVA Airlock Time and Depress Gas Losses

2008-06-29
2008-01-2030
This paper describes the need and solution for minimizing EVA airlock time and depress gas losses using a new method that minimizes EVA out-the-door time for a suited astronaut and reclaims most of the airlock depress gas. This method consists of one or more related concepts that use an evacuated reservoir tank to store and reclaim the airlock depress gas. The evacuated tank can be an inflatable tank, a spent fuel tank from a lunar lander descent stage, or a backup airlock. During EVA airlock operations, the airlock and reservoir would be equalized at some low pressure, and through proper selection of reservoir size, most of the depress gas would be stored in the reservoir for later reclamation. The benefit of this method is directly applicable to long duration lunar and Mars missions that require multiple EVA missions (up to 100, two-person lunar EVAs) and conservation of consumables, including depress pump power and depress gas.
Technical Paper

Martian Atmospheric Utilization by Temperature-Swing Adsorption

1996-07-01
961597
Technologies that can be used to extract oxygen and other useful products from the Martian atmosphere for exploration missions will require compression of the low-pressure Martian gas. One technique that appears ideally suited for this application is temperature-swing adsorption, which can produce purified and compressed CO2 in a virtually solid-state process whose energy requirements can be met mainly through the diurnal temperature cycle. This paper focuses on material selection and sensitivity of this adsorption process to variations in Mars surface conditions. Experimental results indicate that, of the zeolite and carbon materials studied, a NaX zeolite is a superior adsorbent in terms of the amount of pressurized gas it can produce per unit mass of sorbent.
Technical Paper

Interactive Simulation-Based Testing of Product Gas Transfer Integrated Monitoring and Control Software for the Lunar Mars Life Support Phase III Test

1998-07-13
981769
Gas transfer systems in a closed life support test were controlled by intelligent layered monitoring and control software. Interactive simulation-based testing was used for system-level validation of the discrete sequencer layer of the software. An advanced discrete event simulation tool was used to model diverse components and systems for processing gases in a plant growth chamber, crew chamber and incinerator, and transferring gases between chambers. Models included physico-chemical and biological gas processors, pumps, concentrators, chambers and tanks, and devices for configuring and controlling gas transfer. Several types of control were modeled. This paper describes the models, the testing approach, and some results of the testing.
Technical Paper

Growth of Super-Dwarf Wheat on the Russian Space Station MIR

1996-07-01
961392
During 1995, we tested instruments and attempted a seed-to-seed experiment with Super-Dwarf wheat in the Russian Space Station Mir. Utah instrumentation included four IR gas analyzers (CO2 and H2O vapor, calculate photosynthesis, respiration, and transpiration) and sensors for air and leaf (IR) temperatures, O2, pressure, and substrate moisture (16 probes). Shortly after planting on August 14, three of six fluorescent lamp sets failed; another failed later. Plastic bags, necessary to measure gas exchange, were removed. Hence, gases were measured only in the cabin atmosphere. Other failures led to manual watering, control of lights, and data transmission. The 57 plants were sampled five times plus final harvest at 90 d. Samples and some equipment (including hard drives) were returned to earth on STS-74 (Nov. 20). Plants were disoriented and completely vegetative. Maintaining substrate moisture was challenging, but the moisture probes functioned well.
Technical Paper

Further Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

2008-06-29
2008-01-2101
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft, but additional data was needed on the operational characteristics of the package in a simulated spacecraft environment. One unit was tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the latter part of 2006. Those test results were reported in a 2007 ICES paper.
Technical Paper

Experimental Results Obtained with a Pilot Scale System to Remove Pollutants from an Incinerator Effluent

2002-07-15
2002-01-2395
Incineration is a promising method for converting biomass and human waste into CO2 and H2O during extended planetary exploration. Unfortunately, it produces NOX and other pollutants. TDA Research has developed a safe and effective process to remove NOX from waste incinerator product gas streams. In our process, NO is catalytically oxidized to NO2, which is then removed with a wet scrubber. In a SBIR Phase II project, TDA designed and constructed a pilot scale system, which will be used with the incinerator at NASA Ames Research Center. In this paper, we present test results obtained with our system, which clearly demonstrate the effectiveness of this approach to NOX control.
Technical Paper

Development of a Test Facility for Air Revitalization Technology Evaluation

2007-07-09
2007-01-3161
Development of new air revitalization system (ARS) technology can initially be performed in a subscale laboratory environment, but in order to advance the maturity level, the technology must be tested in an end-to-end integrated environment. The Air Revitalization Technology Evaluation Facility (ARTEF) at the NASA Johnson Space Center (JSC) serves as a ground test bed for evaluating emerging ARS technologies in an environment representative of spacecraft atmospheres. At the center of the ARTEF is a hypobaric chamber which serves as a sealed atmospheric chamber for closed loop testing. A Human Metabolic Simulator (HMS) was custom-built to simulate the consumption of oxygen, and production of carbon dioxide, moisture and heat by up to eight persons. A variety of gas analyzers and dew point sensors are used to monitor the chamber atmosphere and the process flow upstream and downstream of a test article. A robust vacuum system is needed to simulate the vacuum of space.
Technical Paper

Development of a Pilot Scale Apparatus for Control of Solid Waste Using Low Temperature Oxidation

2007-07-09
2007-01-3135
In February 2004 NASA released “The Vision for Space Exploration.” The important goals outlined in this document include extending human presence in the solar system culminating in the exploration of Mars. Unprocessed waste poses a biological hazard to crew health and morale. The waste processing methods currently under consideration include incineration, microbial oxidation, pyrolysis and compaction. Although each has advantages, no single method has yet been developed that is safe, recovers valuable resources including oxygen and water, and has low energy and space requirements. Thus, the objective of this project is to develop a low temperature oxidation process to convert waste cleanly and rapidly to carbon dioxide and water. In the Phase I project, TDA Research, Inc. demonstrated the potential of a low temperature oxidation process using ozone. In the current Phase II project, TDA and NASA Ames Research Center are developing a pilot scale low temperature ozone oxidation system.
Technical Paper

Development of a Gravity Independent Nitrification Biological Water Processor

2003-07-07
2003-01-2560
Biological water processors are currently being developed for application in microgravity environments. Work has been performed to develop a single-phase, gravity independent anoxic denitrification reactor for organic carbon removal [1]. As a follow on to this work it was necessary to develop a gravity independent nitrification reactor in order to provide sufficient nitrite and nitrate to the organic carbon oxidation reactor for the complete removal of organic carbon. One approach for providing the significant amounts of dissolved oxygen required for nitrification is to require the biological reactor design to process two-phase gas and liquid in micro-gravity. This paper addresses the design and test results overview for development of a tubular, two-phase, gravity independent nitrification biological water processor.
Technical Paper

Development of Metal-impregnated Single Walled Carbon Nanotubes for Toxic Gas Contaminant Control in Advanced Life Support Systems

2003-07-07
2003-01-2368
The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Highly purified metal-impregnated carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake gaseous species based both on the nanotube’s controlled pore size, high surface area, and ordered chemical structure that allows functionalization and on the nanotube’s effectiveness as a catalyst support material for toxic contaminants removal. We present results on the purification of single walled carbon nanotubes (SWCNT) and efforts at metal impregnation of the SWCNT’s.
Technical Paper

Development Status of the VPCAR Water Processor Assembly

2003-07-07
2003-01-2626
The purification of waste water is a critical element of any long-duration space mission. The Vapor Phase Catalytic Ammonia Removal (VPCAR) system offers the promise of a technology requiring low quantities of expendable material that is suitable for exploration missions. NASA has funded an effort to produce an engineering development unit specifically targeted for integration into the NASA Johnson Space Center's Integrated Human Exploration Mission Simulation Facility (INTEGRITY) formally known in part as the Bioregenerative Planetary Life Support Test Complex (Bio-Plex) and the Advanced Water Recovery System Development Facility. The system includes a Wiped-Film Rotating-Disk (WFRD) evaporator redesigned with micro-gravity operation enhancements, which evaporates wastewater and produces water vapor with only volatile components as contaminants. Volatile contaminants, including organics and ammonia, are oxidized in a catalytic reactor while they are in the vapor phase.
X