Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Relationship between Carbon Monoxide and Particulate Matter Levels across a Range of Engine Technologies

2012-04-16
2012-01-1346
Relationships between diesel particulate matter (PM) mass and gaseous emissions mass produced by engines have been explored to determine whether any gaseous species may be used as surrogates to infer PM quantitatively. It was recognized that sulfur content of fuel might independently influence PM mass, since PM historically is composed of elemental carbon, organic carbon, sulfuric acid, ash and wear particles. Previous research has suggested that PM may be correlated with carbon monoxide (CO) for an engine that is exercised through a variety of speed and load cycles, but that the correlation does not extend to a group of engines. Large databases from the E-55/59 and Gasoline/Diesel PM Split programs were employed, along with the IBIS bus emissions database and several additional data sets for on- and off-road engines to examine possible relationships.
Technical Paper

Final Operability and Chassis Emissions Results from a Fleet of Class 6 Trucks Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters

2005-10-24
2005-01-3769
Six 2001 International Class 6 trucks participated in a project to determine the impact of gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (DPFs) on emissions and operations from December 2003 through August 2004. The vehicles operated in Southern California and were nominally identical. Three vehicles operated “as-is” on California Air Resources Board (CARB) specification diesel fuel and no emission control devices. Three vehicles were retrofit with Johnson Matthey CCRT® (Catalyzed Continuously Regenerating Technology) filters and fueled with Shell GTL Fuel. Two rounds of emissions tests were conducted on a chassis dynamometer over the City Suburban Heavy Vehicle Route (CSHVR) and the New York City Bus (NYCB) cycle. The CARB-fueled vehicles served as the baseline, while the GTL-fueled vehicles were tested with and without the CCRT filters. Results from the first round of testing have been reported previously (see 2004-01-2959).
Technical Paper

Class 8 Trucks Operating On Ultra-Low Sulfur Diesel With Particulate Filter Systems: Regulated Emissions

2000-10-16
2000-01-2815
Emissions from heavy-duty vehicles may be reduced through the introduction of clean diesel formulations, and through the use of catalyzed particulate matter filters that can enjoy increased longevity and performance if ultra-low sulfur diesel is used. Twenty over-the-road tractors with Detroit Diesel Series 60 engines were selected for this study. Five trucks were operated on California (CA) specification diesel (CARB), five were operated on ARCO (now BP Amoco) EC diesel (ECD), five were operated on ARCO ECD with a Johnson-Matthey Continuously Regenerating Technology (CRT) filter and five were operated on ARCO ECD with an Engelhard Diesel Particulate Filter (DPX). The truck emissions were characterized using a transportable chassis dynamometer, full-scale dilution tunnel, research grade gas analyzers and filters for particulate matter (PM) mass collection. Two test schedules, the 5 mile route and the city-suburban (heavy vehicle) route (CSR), were employed.
Technical Paper

Characterization of Emissions from Hybrid-Electric and Conventional Transit Buses

2000-06-19
2000-01-2011
Hybrid-electric transit buses offer benefits over conventional transit buses of comparable capacity. These benefits include reduced fuel consumption, reduced emissions and the utilization of smaller engines. Factors allowing for these benefits are the use of regenerative braking and reductions in engine transient operation through sophisticated power management systems. However, characterization of emissions from these buses represents new territory: the whole vehicle must be tested to estimate real world tailpipe emissions levels and fuel economy. The West Virginia University Transportable Heavy Duty Emissions Testing Laboratories were used to characterize emissions from diesel hybrid-electric powered as well as diesel and natural gas powered transit buses in Boston, MA and New York City.
Technical Paper

An Emission and Performance Comparison of the Natural Gas Cummins Westport Inc. C-Gas Plus Versus Diesel in Heavy-Duty Trucks

2002-10-21
2002-01-2737
Cummins Westport Inc. (CWI) released for production the latest version of its C8.3G natural gas engine, the C Gas Plus, in July 2001. This engine has increased ratings for horsepower and torque, a full-authority engine controller, wide tolerance to natural gas fuel (the minimum methane number is 65), and improved diagnostics capability. The C Gas Plus also meets the California Air Resources Board optional low-NOx (2.0 g/bhp-h) emission standard for automotive and urban buses. Two pre-production C Gas Plus engines were operated in a Viking Freight fleet for 12 months as part of the U.S. Department of Energy's Fuels Utilization Program. In-use exhaust emissions, fuel economy, and fuel cost were collected and compared with similar 1997 Cummins C8.3 diesel tractors. CWI and the West Virginia University developed an ad-hoc test cycle to simulate the Viking Freight fleet duty cycle from in-service data collected with data loggers.
Technical Paper

A Study of Emissions from CNG and Diesel Fueled Heavy-Duty Vehicles

1993-10-01
932826
The West Virginia University (WVU) Transportable Heavy-Duty Vehicle Emissions Testing Laboratory was employed to conduct chassis dynamometer tests in the field to measure the exhaust emissions from heavy-duty buses and trucks. This laboratory began operation in the field in January, 1992. During the period January, 1992 through June, 1993, over 150 city buses, trucks, and tractors operated by 18 different authorities in 11 states were tested by the facility. The tested vehicles were powered by 14 different types of engines fueled with natural gas (CNG or LNG), methanol, ethanol, liquified petroleum gas (LPG), #2 diesel, and low sulfur diesel (#1 diesel or Jet A). Some of the tested vehicles were equipped with exhaust after-treatment systems. In this paper, a total of 12 CNG-fueled and #2 diesel-fueled transit buses equipped with Cummins L-10 engines, were chosen for investigation.
X