Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

NVH-Challenges of Air Supply Subsystems for Automotive Fuel Cell Applications

2008-04-14
2008-01-0316
Fuel cells convert a fuel together with oxygen in a highly efficient electrochemical reaction to electricity and water. Automotive fuel cell systems mainly use compressed onboard stored hydrogen as fuel. Oxygen from ambient air is fed to the cathode of the fuel cell stack by an air supply subsystem. For its current and next generation air supply subsystem NuCellSys has employed screw type compressor technology, which in the automotive area initially was developed for supercharged internal combustion (IC) engines. As NVH expectations to fuel cell vehicles differ very much from IC-engine driven vehicles, specific efforts have to be taken to address the intense noise and vibration profile of the screw compressor. This paper describes different counter measures which have been implemented into the NuCellSys next generation air supply subsystem.
Technical Paper

Hydrogen Sensors for Automotive Fuel Cell Applications

2013-04-08
2013-01-0497
Since the last decade, alternative powertrains are playing an important role in the strategy of car manufacturers. One important goal is the introduction of zero emission powertrains. These powertrain systems raise increasing political and public interest with the hydrogen fuel cell engine being the most competitive powertrain technology. During the development of this new technology, all the functional aspects including the automotive vehicle safety need to be considered. Hydrogen sensors are installed in the system to optimize the performance of a hydrogen fuel cell system and to enhance the safety concept. New results of sensor optimization and innovative test and development methods based on real vehicle data are described in this paper.
Technical Paper

Air Supply System for Automotive Fuel Cell Application

2012-04-16
2012-01-1225
A fuel cell system consists of a stack, a hydrogen fuel supply and an air supply system. This provides the required air flow and pressure which allows the stack to properly react on the cathode side to recombine Oxygen with the Hydrogen's protons and electrons resulting in water and heat. In addition the air flow and pressure are supporting directly or indirectly the water management. In this paper different air supply systems for automotive application developed by NuCellSys are compared: screw compressor and electrical turbo charger. Different technologies and control strategies allow the fuel cell system integrator to find the optimum between performances, weight, volume and cost. The authors describe the challenges and the new frontier of air supply systems for automotive fuel cell system application.
X