Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Using High-Fidelity Multibody Vehicle Models in Real-Time Simulations

2012-04-16
2012-01-0927
Digital or virtual prototyping by means of a multibody simulation model (MBS) is a standard part of the automotive design process. A high-fidelity model is built and often correlated against test data to increase its accuracy. Once built the MBS model can then be used for high fidelity analysis in ride comfort, handling as well as durability. Next to the MBS model, current industry practice is to develop a reduced degree of freedom model for the design and validation of control or intelligent systems. The models used in the control system design are required to execute in hardware-in-the-loop (HIL) simulations where it is necessary to run real-time. The reason for the creation of the reduced degree of freedom models so far has been that the high-fidelity or off-line model does not execute fast enough to be used in an HIL simulation.
Journal Article

Tire Mark Analysis of a Modern Passenger Vehicle with Respect to Tire Variation, Tire Pressure and Chassis Control Systems

2009-04-20
2009-01-0100
Tire mark analysis is an important factor in accident reconstruction. A precise determination of pre- and postcrash speeds as well as longitudinal and lateral accelerations from tire marks contributes significantly to a reliable accident reconstruction. Continuous advancements in tire and vehicle technology – in particular with respect to modern control systems such as anti-lock braking systems (ABS) – raises the question what role tire marks play in accident reconstruction today. Moreover, this accompanies the question to what extent potential interventions by vehicle control systems such as the electronic stability program (ESP®) resp. the electronic stability control (ESC) can be identified in a tire mark. The widespread use of these systems today makes them increasingly important in accident reconstruction.
Technical Paper

Quality Assurance and Robustness for Predictive Cruise Control Using Digital Map Data

2010-04-12
2010-01-0467
The economic challenges and environmental imperatives facing the trucking and automobile industries today all point to a pressing need to improve fuel efficiency. Due to increasing volatility of fuel supplies, prices and a growing interest in reducing greenhouse gas emissions, fuel efficiency has taken on new urgency. In the long-haul trucking industry this is especially important given the fact that fuel accounts for a significant share of fleet operating costs. To this end Daimler and NAVTEQ have developed a system to improve fuel economy and reduce CO₂ emissions through the integration of digital map data into Advanced Driver Assistance Systems or ADAS. Digital road map attributes, especially road slope have been demonstrated to enable powertrain controls to anticipate road inclination changes and use this information to predictively enhance load management optimization versus the reactive approach afforded by current technology.
Journal Article

Durability Simulation with Chassis Control Systems: Model Depth for a Handling Maneuver

2016-09-02
2016-01-9111
This paper makes a contribution toward a more efficient chassis durability process for the development of passenger cars, in which the simulation of relevant load data is a time-consuming part. This is especially due to the full vehicle model complexity which is usually determined by the demands of rough road simulations. However, for the load calculation on a racetrack, time saving model approaches that are more simplified might be sufficient. Our investigation comprises two levels of vehicle model complexity: one with all chassis parts modeled in a multibody system environment and one characteristic curve based model in an internal simulation environment. Both approaches consider an original chassis control system as a Software-in-the-Loop model. By the evaluation of real-world experiments the main influence factors in terms of durability are demonstrated. With the help of those highly sensitive durability criteria the measurement and simulation results are then compared.
Technical Paper

Bluetec Emission Control System for the US Tier 2 Bin 5 Legislation

2008-04-14
2008-01-1184
While the market share for diesel engines for LD vehicles in Europe has grown continuously in the past years, the market share in North America is still negligible. Until now, it has been possible to fulfill the limits for nitrogen oxides (NOx) both in Europe and in North America by engine measures alone, without using an active NOx aftertreatment system. With the introduction of Tier II Bin 8 and Tier II Bin 5 emissions legislation in the US in 2007, most new diesel applications will now require NOx aftertreatment. One of the possible technologies for the reduction of nitrogen oxides in lean exhaust gas is the NOx storage catalyst which has become the generally-accepted choice for engines with gasoline direct injection systems and which is also utilized in the current diesel Bluetec I systems from Daimler. For heavier applications urea-SCR is the preferred technology to fulfill NOx legislation limits.
X